

ABTEILUNG FÜR INFORMATIK UND
ANGEWANDTE KOGNITIONSWISSENSCHAFT

FAKULTÄT FÜR INGENIEURWISSENSCHAFTEN

Technischer Bericht Nr. 2008-03

On the Recognizability
of Arrow and Graph Languages

H. J. Sander Bruggink
Barbara König

 10.07.2008

 ISSN 1863-8554

IMPRESSUM:

Technische Berichte der Abteilung für Informatik und Angewandte
Kognitionswissenschaft, Universität Duisburg-Essen

ISSN 1863-8554

Herausgeber:

Abteilung für Informatik und Angewandte Kognitionswissenschaft
Fakultät für Ingenieurwissenschaften
Universität Duisburg-Essen
Campus Duisburg
47048 Duisburg

http://duepublico.uni-duisburg-essen.de/informatik/berichte.xml

On the Recognizability
of Arrow and Graph Languages?

H. J. Sander Bruggink and Barbara König

Universität Duisburg-Essen
{sander.bruggink,barbara koenig}@uni-due.de

www.ti.inf.uni-due.de/people/{bruggink,koenig}

Abstract. In this paper we give a category-based characterization of
recognizability. A recognizable subset of arrows is defined via a functor
into the category of relations on sets, which can be seen as a straight-
forward generalization of a finite automaton. In the second part of the
paper we apply the theory to graphs, and we show that our approach is
a generalization of Courcelle’s recognizable graph languages.

1 Introduction

Regular languages have been studied extensively in computer science and they
have a large number of applications. For instance, more recent approaches take
advantage of regular languages for model-checking [1] and termination analysis
[11]. The notion of regularity can be straightforwardly generalized to trees and
tree automata. Hence one can talk about regular tree languages and exploit the
convenient closure properties that these languages enjoy.

Hence, as a next step, it is natural to ask for a natural notion of regular
graph languages. There have been several attempts to answer this question [23,
18, 22, 5], all arriving at slightly different notions of regularity (also called rec-
ognizability), of which the notion of Courcelle [5, 7] emerged as the one which
is widely accepted. To our knowledge these notions of recognizability have not
been applied extensively to verification and it is not entirely clear how they re-
late to graph transformation specified by double-pushout rewriting [4], one of
the standard graph transformation approaches.

Courcelle focuses on the notion of recognizability—which is equivalent to reg-
ularity in the case of word languages—and which characterizes languages as the
inverse image of a monoid morphism from the monoid of words (with concate-
nation) into a finite monoid. Specifically, he extends the more general notion of
Mezei and Wright [17] from recognizability in one-sorted algebras to recogniz-
ability in many-sorted algebras by considering a specific algebra of graphs.

Here we compare the algebraic notion of recognizability by Courcelle with
a categorical notion of recognizability, strongly related to composition-represen-
tative subsets introduced by Griffing [12].

? Supported by the dfg project sands.

We show that if we use the notion of Griffing and work in the category of
cospans of graphs, we recover exactly the notion of recognizability proposed by
Courcelle. Although both approaches rely on the same basic ideas, the proof
is non-trivial. Furthermore it gives us a close relation with the double-pushout
approach which can be characterized as a reactive system over cospans [21].

In addition we extend the notion of Griffing with a so-called automaton
functor that—when instantiated to the word case—specializes to the notion of
deterministic or non-deterministic finite automaton. We show that standard con-
structions on finite automata such as determinization or minimization can also
performed on automaton functors.

We will proceed as follows: in Sect. 2 we will briefly introduce the necessary
concepts of category theory, graphs and graph morphisms. In Sect. 3, we will
introduce our category-theoretic notion of recognizable graph language, and in
Sect. 4 we show that this enjoys useful properties, such as closure properties. In
Sect. 5 we will apply our notion of recognizable arrow languages to define a no-
tion of recognizable language of graphs, by considering the category of cospans
of graphs, and we show that we can restrict ourselves to cospans between dis-
crete graphs, i.e. graphs consisting of nodes only, without affecting the notion of
recognizability. Finally, we show that our approach is equivalent to Courcelle’s
notion of recognizability. All proofs which are not in the main body of the paper
can be found in the appendix.

2 Preliminaries

We briefly review the concepts from category theory, graphs and graph mor-
phisms that will play a role in this paper. For more detailed introductions we
refer to [16] and [10].

2.1 Category theory

We presuppose basic knowledge of category theory. The identity arrow of an
object G will be denoted by idG (or just by id if G is clear from the context).
Furthermore, arrow composition will be denoted by either ;, where the composed
arrow which applies first f and then g is denoted by f ; g. The category Rel is the
category which has sets as objects, relations as arrows and relation composition
as composition operator. The category Set is the subcategory in which all arrows
are in fact total functions. We mention here that a functor A from some category
C into Set is easily extended to a functor from C to Rel by postcomposing it
with the embedding functor.

In the rest of this section we define the more advanced concept of a cospan
category, which will be used in Sect. 5. The idea of the cospan category is to
have a category which has cospans as arrows.

Let C be a category in which all pushouts exist. A cospan c is a pair of
C -arrows 〈cL, cR〉 with the same codomain:

c : J cL−→ G
cR←− K .

2

Above, J and K are the domain (or inner interface) and codomain (or outer
interface) of the cospan c, resp., i.e., the cospan can be considered as an arrow
from J to K. The identity cospan for an object G is the cospan consisting of
twice the identity arrow of G: 〈idG, idG〉 : G→ G← G. Let c : J → G←M and
d : M → H ← K be cospans (where the codomain of c equals the domain of d):
The composition of c and d is defined by the commuting diagram

J G

M

M ′

H K
cL

cR

f

dL

g

dR(PO)

where the middle diamond is a pushout, and the resulting composed cospan is
defined as:

(c ; d) : J
cL;f−−−→M ′

dR;g←−−− K .

We want to form a category which has cospans as arrows, but in order to have
the new category satisfy all axioms of category theory, we have to do some work.
Let two cospans

c : J cL−→ G
cR←− K and d : J dL−→ H

dR←− K

with the same interfaces be given. We define the equivalence relation∼ as follows:
c ∼ d if there exists an isomorphism k from G to H, such that cL ; k = dL and
cR ; k = dR. A semi-abstract cospan is a ∼-equivalence class of cospans. Note
that all members of a semi-abstract cospan have the same domain and codomain,
and we define the domain and codomain of the semi-abstract cospan to be the
domain and codomain of its members.

Now, the category Cospan(C) is defined as the category which has the objects
of C as objects, and semi-abstract cospans as arrows.

2.2 Graphs and graph morphisms

Let a set Σ of labels be given. A hypergraph G (in the following also called a
graph) is a four-tuple 〈VG, EG, attG, labG〉, where VG is the set of nodes of G, EG
is the set of edges, attG : EG → V ∗G (where V ∗G is the set of sequences of elements
of VG) is the attachment function and labG : EG → Σ is the labeling function.
By ∅ we denote the empty graph. A graph morphism f between two graphs G
and H is a pair 〈fV, fE〉 of functions fV : VG → VH and fE : EG → EH such that
the following hold:

fE ; labH = labG and fE ; attH = attG ; f∗V

where f∗V is the natural extension of fV to sequences.
We define the category HGraph of hypergraphs as the category which has

as objects finite (hyper)graphs, and as arrows graph morphisms. Concretely,

3

taking a pushout of morphisms f : U → G, g : U → H in the category of graphs
means to take the disjoint union of G and H and to factor through the smallest
equivalence ≡ (on nodes and edges) that satisfies f(x) ≡ g(x) for all items (i.e.,
for all nodes and edges) x of U .

In particular, we will work with the category Cospan(HGraph). Cospans of
graphs are intimately connected with the double-pushout (dpo) approach to
graph rewriting [21]. dpo rewriting rules are spans of graphs of the form

p : L
ϕL←− I ϕR−→ R .

We consider the cospans ` : ∅ → L
ϕL← I and r : ∅ → R

ϕR← I as left and right-hand
sides. Now, for a graph G let [G] : ∅ → G← ∅ be the cospan consisting of G with
empty source and target. Then dpo rewriting can also be defined as follows: the
graph G rewrites to H by applying rule p if and only if [G] = ` ; c and [H] = r ; c
for some cospan c.

3 Recognizable Languages of Arrows

We consider a fixed category C . In order to be able to talk about sets, we will
require that C is locally small, i.e., for every two objects the class of arrows
between them is a set, called homset. Furthermore in the following a subset of a
homset will be called an (arrow) language.

Definition 3.1 (Recognizability). Let C be a category. We consider a functor
A : C → Rel where every object X of C is mapped to a finite set A(X) (called
the set of states of X) and every arrow f : X → Y is mapped to a relation
A(f) ⊆ A(X)×A(Y). We assume that every set A(X) contains a distinguished
set IAX of start states and a distinguished set FAX of final states as subsets.

The functor A is also called automaton functor. It is called deterministic
whenever every relation A(f) is a function and every IAX contains exactly one
element; this element will be denoted by iAX .

Let J,K be two objects. The (J,K)-language LJ,K(A) (of arrows from J to
K) is defined as follows:

f : J → K is contained in LJ,K(A) if and only if there exist s ∈ IAJ ,
t ∈ FAK which are related by A(f).

A language LJ,K of arrows from J to K is recognizable in C if it is the (J,K)-
language of a an automaton functor A : C → Rel .

The intuition behind the definition is to have a mapping into a finite domain
that respects compositionality and identities, that is, which is a functor. The
functor property ensures that decomposing the arrow in different ways does not
affect acceptance in any way. This is different from the case of words where there
is essentially only one way to decompose a word into atomic components.

In a sense A(f) gives the transition relation of the finite automaton, only
that here we do not have a single set of states, but a set of states for every
object. This means that we have infinitely many sets (which corresponds to the
infinitely many sorts in the case of [5]).

4

Example 3.2. Let F be a nondeterministic finite automaton over the alphabet
Σ, with state set Q, start states I ⊆ Q, final states F ⊆ Q and transition relation
δ ⊆ Q×Σ → P(Q). We consider the free monoid of Σ, i.e., the category with one
object X and words over Σ as arrows from X to X. We construct the following
automaton functor A which recognizes a language L if and only if L is accepted
by F .

– A(X) = Q, with IAX = I and FAX = F ;
– for w ∈ Σ∗, A(w) = {〈s, t〉 | t ∈ δ̂(s, w)}, where δ̂ is the extension of δ from

letters to words given by
• δ̂(s, ε) = {s};
• δ̂(s, wa) =

⋃
{δ(s′, a) | s′ ∈ δ(s, w)}.

Example 3.3. Also tree automata can be seen as a special case of our notion
of automaton functor: take as the category a Lawvere theory where objects are
natural numbers and arrows from m to n are n-tuples of terms with m holes.
Arrow composition is the usual term substitution.

As an example take two unary function symbols f, g, a binary function symbol
h and a constant a. Now, the 3-tuple 〈f(x1), h(x1, x2), g(f(a))〉 has two holes,
i.e., two variables x1, x2. Hence it can be regarded as an arrow from 2 to 3. Then
trees can be represented as arrows from 0 to 1, since they are single terms (or
1-tuples of terms) without variables.

Note that this specific instantiation has similarly been considered in [12].

Two automaton functors are equivalent if they recognize the same language.
Sometimes we are mainly interested in languages of arrows which start at a
fixed object, for instance the initial object; therefore we parametrize the notion
of equivalence with a source object.

Definition 3.4. Let A and B be automaton functors. A and B are said to be
J-equivalent if they recognize the same languages LJ,K of arrows from J to K,
for arbitrary K. They are equivalent if they are J-equivalent for all C -objects J .

It is also possible to find a characterization of recognizable language in terms
of congruence classes, similar to Myhill-Nerode equivalences in the case of regular
string languages.

Definition 3.5 (Congruence). Let C be a category. Let a family of relations

≡R = {RJ,K | J,K are objects of C }

be given, where the components RJ,K are equivalence relations on C -arrows from
J to K. We call ≡R a (right) congruence if the following holds for all arrows
a, a′ : J → K, b : K →M :

If a RJ,K a′, then (a ; b) RJ,M (a′ ; b).

A congruence ≡R is locally finite if each RJ,K ∈ ≡R is an equivalence relation
of finite index (i.e., it has finitely many equivalence classes).

5

Let a : J → K be an arrow. In the following we will write [[a]]RJ,K
, or simply

[[a]]R if J and K are clear from the context, to denote the congruence class of
which a is a member. We will also usually write a ≡R b instead of a RJ,K b.

Proposition 3.6. Let C be a category, J,K C -objects and LJ,K a set of C -
arrows from J to K. The language LJ,K is recognizable in C , if and only if
there exists a locally finite congruence ≡R such that LJ,K is the union of some
equivalence classes of RJ,K .

Note that the proof of Prop. 3.6 only works if we fix a specific start object.
Dually it would also have been possible to fix a target object and to concentrate
on left congruences. But for our examples and for the comparison to the work
of Courcelle fixing a start object seems to be more natural.

The paper by Griffing [12] does not introduce the notion of an automaton
functor, but it shows that composition-representative subsets (which are our
recognizable languages) can be characterized via locally finite congruences. In
addition the paper gives another—equivalent—characterization via a functor
from C into a category with finite homsets. The recognizable languages are then
the preimages of subsets of a finite homset.

4 Determinism, Closure Properties and Minimization

One of the advantages of our characterization over characterizations utilizing fi-
nite homsets or congruences, is that we can talk explicitly about determinization
and minimization. In this section we consider these two notions as well as closure
properties. These results, different from the results in Sect. 5, are not particu-
larly deep or surprising; usually they can be shown quite straightforwardly. We
show them here for completeness and in order to illustrate that our notion of
recognizability is reasonable.

Proposition 4.1. For every automaton functor, there exists an equivalent de-
terministic automaton functor.

Proof. (Sketch.) The construction is more or less equivalent to the case of finite
automata: we replace every set of states by its powerset. ut

Proposition 4.2 (Closure under boolean operators). Suppose we have two
recognizable languages of arrows, L1

J,K and L2
J,K . Then also L1

J,K ∩L2
J,K , L1

J,K ∪
L2
J,K and (L1

J,K)C (the complement of L1
J,K) are recognizable.

Proof. (Sketch.) Again the construction resembles the case of finite automata:
we work with deterministic automaton functors, take the cross product of the
state sets and define the final states appropriately. ut

In the rest of this section we show that each deterministic automaton functor
has a unique equivalent minimal one. The construction of a minimal automa-
ton is analogous to the usual construction for finite automata: first we remove
unreachable states, and then we fuse indistinguishable states.

6

The notion of minimality depends on the exact notion of equivalence we
use. If we fix the source object in advance, the equivalence classes grow, and
therefore smaller minimal automaton functors may be found. The constructions
in the general case and the case with fixed source object are exactly the same,
except for the fact that with a fixed source more states may be unreachable.

We give here two key definitions, of minimality and reachability, and mention
the minimization result.

Definition 4.3. Let A : C → Rel and B : C → Rel be automaton functors. We
define:

A ≤ B if for all G ∈ Obj (C), |A(G)| ≤ |B(G)|
An automaton functor A is (J-)minimal if, for all (J-)equivalent automaton
functors B it holds that A ≤ B.

Definition 4.4. Let A : C → Rel be an automaton functor and K an object of
C . A state s ∈ A(K) is J-reachable, if there exists an arrow c : J → K such
that s ∈ A(c)(IAJ). The state s is reachable, if it is J-reachable for some J .
A is said to be fully (J-)reachable if for all C -objects K and states s ∈ A(K),

s is (J-)reachable.

Proposition 4.5. For each deterministic automaton functor A, there exists a
minimal, (J-)equivalent, deterministic automaton functor Amin which recognizes
the same language and which is unique up to isomorphism.

Note that the results of this section depend on the specific nature of the cat-
egories Rel and Set . It would be interesting to find an abstract characterization
which still allows the techniques and constructions of this section.

5 Recognizable Graph Languages

In this section we apply the theory of the previous sections to recognizing lan-
guages of graphs. First, we show how graph languages can be recognized by
considering the category of (semi-abstract) cospans of graphs. Then we briefly
introduce Courcelle’s algebraic notion of recognizable graph languages, and fi-
nally we show that we can recognize the same graph languages as Courcelle.

5.1 Recognizing Languages of Graphs by Cospans

In the following, the category under consideration will be Cospan(HGraph), i.e.,
the category of cospans of graphs, or put differently, the category of graphs with
inner and outer interfaces. If we want to talk only about graphs without inter-
faces, we can restrict ourselves to languages of cospans with empty interfaces,
i.e., cospans where the source and target is the empty graph.

Definition 5.1. A set L of graphs is recognizable whenever

L∅,∅ = {[G] : ∅ → G← ∅ | G ∈ L}

is a recognizable language in Cospan(HGraph).

7

Below we give an example for a recognizable graph language. It is not sur-
prising that it is recognizable since it is definable in monadic second-order graph
logic and all such languages are recognizable in the sense of Courcelle [5, 7].
However, the example provides some intuition into the notion of recognizability.

Example 5.2 (k-Colorability). We set Nk = {0, . . . , k − 1}. Let G be a graph.
A k-coloring of G is a function f : VG → Nk such that for all e ∈ EG and for
all v1, v2 ∈ attG(e) it holds that f(v1) 6= f(v2) if v1 6= v2. We show that the
language of all k-colorable graphs is recognizable, by considering the following
automaton functor A : Cospan(HGraph)→ Rel :

– Every graph J is mapped to A(J), the set of all valid k-colorings of J :

A(J) = {f : VJ → Nk | f is a valid k-coloring of J} .

– For a cospan c : J → G← K the relation A(c) relates two colorings fJ , fK ,
whenever there exists a coloring f for G such that f(cL(v)) = fJ(v) for every
node v ∈ VJ and f(cR(v)) = fK(v) for every node v ∈ VK .

Specifically we have thatA(∅) = {∅} where ∅ is the empty coloring. Then in order
to accept all k-colorable graphs with empty interfaces we take IA∅ = FA∅ = {∅}:
a graph ∅ → G← ∅ is accepted whenever the two empty mappings are related.

Note that it is well known that k-colorability of graphs is an NP -complete
property. Intuitively this manifests itself in the fact that interfaces may grow un-
boundedly, leading to an exponential explosion of the size of the state sets. How-
ever, if we restrict ourselves to graphs of bounded treewidth, there are efficient
algorithms for k-colorability (see also the related discussion in the conclusion).

Example 5.3. Let H be a fixed graph. We consider the language LH of all graphs
G for which a morphism f : G → H exists. The language LH is recognizable
whenever H is finite.

The functor A associates to every graph J the set of
all morphisms J → H. For a cospan c : J → G ← K it
relates a morphism fJ : J → H to a morphism fK : K → H
whenever there exists a morphism f : G → H such that
cL ; f = fJ and cR ; f = fK . All states are initial and final.

J
cL //

fJ ��
@@

@@
@@

@ G

f

��

K
cRoo

fK~~}}
}}

}}
}

H

This is a weaker notion than recognizability and has been considered before
(see for instance [14, 3]).

5.2 Robustness

We now show the robustness of recognizability by restricting ourselves to injec-
tive, edge-injective and discrete interfaces. These results will also be important
for the comparison with Courcelle’s notion of recognizability (see Sect. 5.4).

We use proof principles already explored in [9] where robustness proofs are
based on the characterization of recognizable languages in terms of locally finite
congruences (see Def. 3.5). The results and proofs all follow the same lines: let D

8

be a subcategory of C and let J,K be two objects of D . We want to show that
every language of arrows from J to K is recognizable in C if and only if it is
recognizable in D . The direction from left to right is obvious, we simply restrict
the congruence or the automaton functor accordingly. The real challenge is the
direction from right to left. In this case take a congruence ≡R on D and construct
a congruence ≡′R on C that is locally finite and refines ≡R when restricted to
D . Since ≡′R refines ≡R any union of equivalence classes can still be represented
as a union of (possibly more) equivalence classes, and hence recognizability is
preserved.

We now show the convenient fact that restricting our attention to cospans
with injective interfaces does not limit the descriptive power of the formalism.
Hence let G = Cospan(HGraph) be a cospan category and let Ginj be its subcat-
egory that consist only of the cospans with injective interface morphisms.

Proposition 5.4. Let a class LJ,K of graphs with injective interfaces J,K be
called injectively recognizable whenever LJ,K is recognizable in Ginj. Then LJ,K
is recognizable in G if and only if it is injectively recognizable.

We now restrict our attention to the subcategory Geinj of cospans with inter-
face morphism which are injective on edges. The result is not that interesting in
its own right, but it is a necessary auxiliary step for Prop. 5.6.

Corollary 5.5. Let a class LJ,K of graphs with edge-injective interfaces J,K be
called edge-injectively recognizable whenever LJ,K is recognizable in Geinj. Then
LJ,K is recognizable in G if and only if it is edge-injectively recognizable.

Similar to the restriction to injective interfaces we now show the fact that
restricting our attention to cospans with discrete interfaces does not limit the
descriptive power of the formalism. This allows us to restrict our attention to
discrete interfaces in the following. Let G = Cospan(HGraph) be a cospan cate-
gory and let Gdis be its subcategory that consist only of the cospans with discrete
interfaces, i.e., with interface graphs that do not contain edges.

Proposition 5.6. Let a class LJ,K of graphs with discrete interfaces J,K be
called discretely recognizable whenever LJ,K is recognizable in Gdis. Then LJ,K
is recognizable in G if and only if it is discretely recognizable.

In a sense the result above is mirrored in the fact that graph rewriting does
not lose any expressive power if we restrict to discrete interfaces.

5.3 Courcelle’s Algebra of Graphs

We will now give a short introduction to Courcelle’s algebraic notion of recogniz-
able graph languages [5, 7]. Courcelle’s notion of recognizable graph language is
widely accepted as a notion of regularity for graphs. Also, Courcelle showed that
if a language is definable in monadic second-order logic then it is recognizable.
In [13] Courcelle’s notion has been found to be nearly identical to the notions

9

finite graph property and compatible graph property, which were developed in
different contexts. For instance compatible properties arise in connection with
hyperedge replacement grammars.

In [7] the relevant graph algebra is called hr-algebra (and in addition another
algebra, called vr-algebra is investigated). However, here in this paper we use the
algebra introduced in [5], since it is closer to our notion of cospan composition
and hence yields simpler proofs.

Note that there are two major differences between cospan composition and
the algebra of graphs introduced below: first the graph algebra considers only dis-
crete interfaces, and we have already shown how to bridge this gap via Prop. 5.6.
Second, cospans have two interfaces whereas graphs in the algebra have only
one.

First, we give some preliminary definitions. We set Nk = {0, . . . , k − 1}. Let
P,Q be arbitrary sets. For functions f : Nn → P and g : Nm → Q, we define the
function f � g : Nn+m → P ∪Q as follows:

(f � g)(i) =
{
f(i) if i < n
g(i− n) otherwise.

An n-ary hypergraph is a pair G = 〈baseG, ζG〉 consisting of a hypergraph
baseG and a mapping ζG : Nn → V , where V is the node set of baseG. The
function ζG is called the interface of the graph, and its range the external nodes.
Basically, an n-ary hypergraph corresponds to a graph with an empty internal
and discrete external interface.

In [2], the following atomic operations on n-ary graphs are defined:

Redefinition of external nodes. Let an n-ary hypergraph G be given, and
let σ : Nm → Nn be a function. The redefinition of G under σ is:

redefσ(G) = 〈baseG, (σ ; ζG)〉 .

Note that this means that redefσ(G) is an m-ary graph.
Fusion of external nodes. Let G be an n-ary graph, and θ an equivalence

relation on Nn. The fusion of G over θ, denoted fuseθ(G), is obtained by
fusing the nodes of G according to θ. The result is again an n-ary graph.

Disjoint union. Let G be an n-ary graph and H an m-ary graph. The disjoint
union of G and H is defined as:

G⊕H = 〈baseG ⊕ baseH, ζG � ζH〉

(we assume here that the node sets of baseG and baseH are disjoint and that
⊕ denotes the disjoint union on base graphs.)

We will now define recognizability in the sense of Courcelle via congruences.
There is an alternative, but equivalent, definition of recognizable subsets as
preimages of algebra homomorphisms.

10

Definition 5.7. Let ≡C be an equivalence on n-ary hypergraphs that relates only
hypergraphs with the same arity. It is called locally finite if for each n there are
only finitely many equivalence classes. It is called a congruence if the following
conditions hold:

– if G ≡C H, then redefσ(G) ≡C redefσ(H);
– if G ≡C H, then fuseθ(G) ≡C fuseθ(H);
– if G1 ≡C H1 and G2 ≡C H2, then G1 ⊕G2 ≡C H1≡CH2.

A set L of n-ary graphs is called Courcelle-recognizable if it is the union of
finitely many equivalence classes of a locally finite congruence.

We will in the following show that the notion of recognizability of Courcelle
coincides with our notion, hence the notion of “Courcelle-recognizability” is re-
dundant. However, we will keep it for the moment in order to properly distinguish
the two notions of recognizability.

5.4 Equivalence of the two Notions of Recognizability

In this subsection we show that our notion of recognizable graph language is
equivalent to Courcelle’s. In Courcelle’s notion there is only one (discrete) inter-
face. The role of cospan composition is played by the operators defined above.

Encouraged by the result of Prop. 5.6 we restrict our attention to cospans
with discrete interfaces. The discrete graph with node set Nn will be called
canonical n-graph, and will be represented by Disn; we make use of the fact that
each discrete graph with n nodes is isomorphic to the canonical n-graph. To
formalize the equivalence between both notions of recognizability, we must first
associate (sets of) cospans of graphs with n-ary graphs.

Definition 5.8. For each discrete graph D with n nodes we fix in advance an
isomorphism diD : Disn → D such that diD1⊕D2 = diD1 � diD2 .

We define the function bend which maps a cospan

c : J cL−→ G
cR←− K

where J,K are discrete interfaces with n,m nodes, resp., to an (n+m)-ary graph
as follows:

bend(c) = 〈G, (diJ ; cL)� (diK ; cR)〉 .

The name bend is inspired by the fact that the function basically ‘bends’ a
cospan so that its inner and outer interface are together, and then interprets the
resulting figure as a (m+ n)-ary hypergraph, as illustrated below:

J

G

K external nodes

11

redef σ =
•

•

•

•

•
•
•

J J K

σ′

fuseθ =
•
•
•

•

•

•
•
•

J D J

Fig. 1. Simulating Courcelle’s graph operation by cospans. On the left: example of
cospan simulating redefinition of external nodes; on the right: example of cospan sim-
ulating fusion of external nodes.

Theorem 5.9. Let J be a discrete graph. A set of graphs L is the (∅, J)-language
of some automaton functor A if and only if bend(L) is Courcelle-recognizable.

Proof. (Sketch.) We prove the theorem by simulating Courcelle’s operations by
cospan composition, and cospan composition by Courcelle’s operations, so that
the congruences can be transferred. Suppose J has n nodes. The simulations of
Courcelle’s operations work as follows (see Fig. 1):

– Let σ : Nm → Nn be a function, and K a discrete graph with m nodes. It
can be considered as a graph morphism from Dism to Disn. Then σ′ = di−1

K ;
σ ; diJ is the corresponding graph morphism from K to J . Postcomposing a
cospan c with the cospan

redef σ : J idJ−→ J
σ′

←− K

simulates performing the redefσ operation on c.
– Let θ be an equivalence relation on the elements of Nn (i.e. an equivalence

relation on the nodes of Disn). Suppose θmap is the morphism which maps
each element of Nn to its θ-equivalence class and let θ′ = di−1

J ; θmap. Then

fuseθ : J θ′−→ D
θ′←− J ,

where D is the discrete graph with node set {[[v]]θ | v ∈ Nn}, simulates the
fuseθ operation.

– Disjoint sum is simulated by disjoint sum in the category of graphs and
we obtain the congruence property via the congruence property for cospan
composition (see the extended proof in the appendix).

The simulation of cospan composition in Courcelle’s algebra depends on the
fact that bend(c ; d) = redefσ(fuseθ(bend(c) ⊕ bend(d))) for appropriate σ and
θ. In Fig. 2 this is depicted for cospans c, d where c has inner interface ∅. ut

Note that one of the reasons why the proof works is the fact that the category
of cospans is compact-closed, which means that certain “bending” laws, similar
to the one above, hold.

12

G

n

H

n m

⊕
;

n n m

;

m

Fig. 2. Simulating cospan composition with Courcelle’s operations. First, we construct
the disjoint union of the graphs In the second step the indicated external nodes are
fused and then removed from the external nodes by a redefinition.

6 Conclusion

We have shown that a very general categorical notion of recognizability via au-
tomaton functors (which is equivalent to a notion suggested by Griffing [12]) is
equivalent to a notion of recognizability for graph languages by Courcelle when-
ever we consider the category of cospans of graphs. The proof of this equivalence
is non-trivial.

Furthermore we investigated our notion of automaton functor and showed
that it preserves several nice properties which are well-known for finite-state
automata. Our main motivation behind this work is to provide automata-based
techniques for verification and termination analysis of graph transformation sys-
tems. Some preliminary results on termination analysis are reported in [3].

Cospans of graphs were also investigated, in the context of gluing graph
structures, by Rosebrugh, Sabadini and Walters [19, 20], but in [20] their graph
structures represent automata which recognize word languages rather than graph
languages. In the future we plan to explore the relations between their and our
work in some more detail.

Naturally, efficiency questions arise. The automaton functor we are working
with is only locally finite, i.e., the sets of states are finite for every interface, but
interfaces might be arbitrarily large. This question has already been addressed by
Courcelle, who characterized classes of graphs which can be recognized efficiently.
He showed that for the hr-algebra of graphs a graph can be decomposed via
interfaces whose size is bounded by k+ 1 if and only if its treewidth is bounded
by k [6, 7]. Hence a language L can be recognized efficiently (even in linear time!)
if there is a bound on the treewidth of the graphs contained in L (see also [8]).
This is also known as Courcelle’s theorem and applies to properties such as
k-colorability that would be NP -complete on graphs of unbounded treewidth.

Since with cospans we have a different notion of interface and different op-
erations, this result by Courcelle does not carry over directly, although we have
the same notion of recognizability. This is a point which has to be investigated
further, but in order to arrive at a similar result we believe that it is necessary
to equip our category with a monoidal operation ⊕ (which is the disjoint sum
on cospans) and to require that an automaton functor preserves this monoidal
operation. We conjecture that, at least in the case of graphs with empty inner
interface, adding such a monoidal operation will not affect which sets of (cospans
of) graphs are recognizable. Currently it seems that we can only guarantee linear-

13

time algorithms for graphs of bounded pathwidth, since cospans allow only to
construct path decompositions of graphs.

Of course, in order to obtain practical algorithms for recognizability, we have
to find reasonable ways to represent and handle automaton functors, at least in
the case of graphs of bounded treewidth. We have some preliminary ideas how
this can be achieved, but it is an interesting problem that has to be studied
further.

In this paper we mainly considered cospans of graphs, but there is a more
general notion of (dpo) rewriting based on adhesive categories [15, 10]. Our
notion of recognizability can be easily generalized to this setting, whereas it
is not entirely clear how to extend Courcelle’s algebra of graphs. One possible
application of such a generalization provides us with a method to show that
(recognizable) sets of objects in an adhesive category are invariant under dpo
rewriting rules. Let p : L ← I → R be a dpo rule and let ≡R be a congruence1

characterizing a language L of objects. We observe that whenever an object A
is rewritten to B via p, A ∈ L and (0→ L← I)≡R (0→ R← I) (for an initial
object 0), then we can conclude that B ∈ L.

Finally, an important result in Courcelle’s work is that a language is recog-
nizable whenever it is definable in monadic second-order logic [5, 7]. Currently
we have no counterpart to this result, but it might be worthwhile to study it in
a more categorical setting.

Acknowledgement

The authors would like to thank Tobias Heindel for his valuable comments on
the contents of this paper.

References

1. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
Proc. of CAV ’00, pages 403–418. Springer, 2000. LNCS 1855.

2. M. Bouderon and B. Courcelle. Graph expressions and graph rewritings. Mathe-
matical Systems Theory, 20:81–127, 1987.

3. H.J.S. Bruggink. Towards a systematic method for proving termination of graph
transformation systems (work-in-progress paper). In Proc. of GT-VC ’07 (Graph
Transformation for Verification and Concurrency), 2007.

4. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation—part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

5. B. Courcelle. The monadic second-order logic of graphs I. recognizable sets of finite
graphs. Information and Computation, 85:12–75, 1990.

1 One is here actually interested in the weaker notion of a Myhill well-quasi order
instead of a congruence, but we omit the details.

14

6. B. Courcelle. Graph grammars, monadic second-order logic and the theory of
graph minors. In Graph Structure Theory, pages 565–590. American Mathematical
Society, 1991.

7. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol.1: Foundations, chapter 5.
World Scientific, 1997.

8. B. Courcelle and J. Lagergren. Equivalent definitions of recognizability for sets
of graphs of bounded tree-width. Mathematical Structures in Computer Science,
6(2):141–165, 1996.

9. B. Courcelle and P. Weil. The recognizability of sets of graphs is a robust property.
Theoretical Computer Science, 342(2–3):173–228, 2005.

10. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

11. A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting sys-
tems. Applicable Algebra in Engineering, Communication and Computing, 15(3–
4):149–171, 2004.

12. G. Griffing. Composition-representative subsets. Theory and Applications of Cat-
egories, 11(19):420–437, 2003.

13. A. Habel, H.-J. Kreowski, and C. Lautemann. A comparison of compatible, finite
and inductive graph properties. Theoretical Computer Science, 110(1):145–168,
1993.

14. V. Kuncak and M.C. Rinard. Existential heap abstraction entailment is undecid-
able. In Proc. of SAS ’03, pages 418–438. Springer, 2003. LNCS 2694.

15. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO –
Theoretical Informatics and Applications, 39(3), 2005.

16. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
17. J. Mezei and J.B. Wright. Algebraic automata and context-free sets. Information

and Control, 11:3–29, 1967.
18. A. Potthoff, S. Seibert, and W. Thomas. Nondeterminism versus determinism of

finite automata over directed acyclic graphs. Bulletin of the Belgian Mathematical
Society, 1:285–298, 1994.

19. R. Rosebrugh, N. Sabadini, and R.F.C. Walters. Generic commutative separable
algebras and cospans of graphs. Theory and applications of categories, 15(6):164–
177, 2005.

20. R. Rosebrugh, N. Sabadini, and R.F.C. Walters. Calculating colimits composition-
ally. 2007.

21. V. Sassone and P. Sobociński. Reactive systems over cospans. In Proc. of LICS
’05, pages 311–320. IEEE, 2005.

22. T. Urvoy. Abstract families of graphs. In Proc. of DLT ’02, pages 381–392.
Springer, 2003. LNCS 2450.

23. K.-U. Witt. Finite graph-acceptors and regular graph-languages. Information and
Control, 50(3):242–258, 1981.

15

A Proofs

3. Recognizable Languages of Arrows

Proposition 3.6. Let C be a category, J,K C -objects and LJ,K a set of C -
arrows from J to K. The language LJ,K is recognizable in C , if and only if
there exists a locally finite congruence ≡R such that LJ,K is the union of some
equivalence classes of RJ,K .

Proof. (⇒) Let A be the automaton functor which recognizes the language LJ,K .
We construct ≡R = {RM,N | M,N ∈ C } as follows. Let a, a′ : M → N be C -
arrows. We define: a RM,N a′ if and only if A(a) = A(a′). It is clear that each
RM,N is an equivalence relation of finite index. The fact that ≡R is a congruence
follows from the fact that A is a functor, and thus respects composition. Now
we have that

LJ,K = {[[a]]R | a : J → K and A(a)(IAJ) ∩ FAK 6= ∅} .

(⇐) This direction of the proof only works for sets of arrows starting from
the fixed object J . Let a congruence ≡R = {RM,N | M,N ∈ Obj (C)} and
the language LJ,K be given. We define the deterministic automaton functor
A : C → Set as follows:

– for an object H, we define A(H) = {[[a]]R | a : J → H}.
– for an arrow b : H →M and [[a]]R ∈ A(H) we define A(b)([[a]]R) = [[a ; b]]R.

We show that A is a functor, i.e. that it respects composition and identities:

– Composition. Let b : H →M and c : M → N be C -arrows.

(A(b) ; A(c))
(
[[a]]RJ,H

)
= A(c)

(
A(b)

(
[[a]]RJ,H

))
= A(c)

(
[[a ; b]]RJ,M

)
= [[a ; b ; c]]RJ,N

= A(b ; c)
(
[[a]]RJ,H

)
– Identities. Let a : J → H be a C -arrow. Then

A(idH) ([[a]]R) = [[a ; idH]]R = [[a]]R = idA(H) ([[a]]R) .

Finally, we de define IAJ and FAK as follows:

IAJ = {idJ}
FAK = {[[a]]R | a ∈ LJ,K} .

ut

Note that in our construction of an automaton functor from a given con-
gruence, we construct an automaton functor which only recognizes the language
LJ,K correctly. For other choices of J and K, the recognized languages may not
correspond. We leave it to further research to find a better construction.

16

4. Determinism, Closure Properties and Minimization

Proposition 4.1. For every automaton functor, there exists an equivalent de-
terministic automaton functor.

Proof. Let A : C → Rel be a non-deterministic automaton functor. We construct
a deterministic automaton functor AD : C → Set as follows:

– For each object H ∈ Obj (C) we take AD(H) = ℘(A(H)), with IAD
H = {IAH}

and FAD
H = {S ⊆ A(H) | S ∩ FAH 6= ∅}.

– For each arrow c ∈ Arr(C) we take

AD(c) (S) =
⋃
s∈S
A(c) (s) .

It is clear that A and AD recognize the same language of arrows, and that AD

is deterministic. ut

Proposition 4.2 (Closure under boolean operators). Suppose we have
two recognizable languages of arrows, L1

J,K and L2
J,K . Then also L1

J,K ∩ L2
J,K ,

L1
J,K ∪ L2

J,K and (L1
J,K)C (the complement of L1

J,K) are recognizable.

Proof. Let A1 be the automaton functor which recognizes L1
J,K and A2 the

automaton functor which recognizes L2
J,K . First we obtain equivalent determin-

istic automaton functors A′1,A′2, in the way of Prop. 4.1. Then we construct the
required automaton functors as follows:

– For union and intersection, let A be defined as A(J) = A′1(J) × A′2(J),
and the cross-product of relations defined pointwise in the obvious ways.
Furthermore, we take IAJ = IA

′
1

J × IA
′
2

J . Finally, we define FAJ as follows:
• For union: FAJ = (FA1

J ×A2(J)) ∪ (A1(J)× FA2
J)

• For intersection: FAJ = FA1
J × FA2

J

– For complement, we define for objects J and arrows c:

A(J) = A′1(J) IAJ = IA
′
1

J

A(c) = A′1(c) FAJ = (FA
′
1

J)C .

ut

Definition A.1. Let a deterministic automaton functor A : C → Set , a C -
object J and s, t ∈ A(J) be given. We define: s ≈ t if A(c)(s) ∈ FAK ⇔ A(c)(t) ∈
FAK for all C -arrows c from J to K.

Lemma A.2. A fully (J-)reachable, deterministic automaton functor A : C →
Set is (J-)minimal if and only if for all K ∈ Obj (C) and s, t ∈ A(K), where
s 6= t, it holds that s 6≈ t.

17

Proof. We only show the proof of the claim which is not restricted to any J .
The proof in the restricted case is analogous.

(⇒) If for some K ∈ Obj (C), s, t ∈ A(K), s 6= t, we have s ≈ t, we may
merge s and t (i.e. factor A(K) through the smallest equivalence relation such
that s ≡ t), obtaining a smaller equivalent automaton functor.

(⇐) Let B : C → Set be a deterministic automaton functor such that for
some C -object K it holds that |B(K)| < |A(K)|. We need to prove that A and
B are not equivalent.

For all u ∈ A(K), arbitrarily select a C -arrow fu : Gu → K such that
A(fu)(iAGu

) = u. (Such an arrow exists because A is fully reachable by assump-
tion.) Since |B(K)| < |A(K)| there exist states s, t ∈ A(K), with s 6= t, such
that

B(fs)(iBGs
) = B(ft)(iBGt

). (?)

Since, by assumption, s 6≈ t, there is, for some H, an arrow g : K → H such
that A(g)(s) ∈ FAH but A(g)(t) 6∈ FAH (or the other way around, a case which
we will, without loss of generality, ignore). Therefore (fs ; g) ∈ LGs,H(A), but
(ft ; g) 6∈ LGt,H(A).

However, by (?), either both fs ; g and ft ; g are element of LGs,H(B), or
both are not. So we conclude that A and B are not equivalent. ut

Proposition 4.5. For each deterministic automaton functor A, there exists a
minimal, (J-)equivalent, deterministic automaton functor Amin which recognizes
the same language and which is unique up to isomorphism.

Proof. Let A : C → Set be a deterministic automaton functor. We define the
minimal automaton functor Amin : C → Set , using the equivalence relation ≈
defined above:

– Amin(K) = {[[s]]≈ | s is a (J-)reachable state of A(K)}, and similarly for
IA

min

K and FA
min

K .
– Amin(d)([[s]]≈) = {[[s′]]≈ | s′ is a (J-)reachable state of A(M), s′ ∈ A(d)(s)}

for d : K →M .

The facts that Amin is minimal and unique up to isomorphism follow easily from
Lemma A.2. ut

5. Recognizable Graph Languages

5.2. Robustness

Proposition 5.4. Let a class LJ,K of graphs with injective interfaces J,K be
called injectively recognizable whenever LJ,K is recognizable in Ginj. Then LJ,K
is recognizable in G if and only if it is injectively recognizable.

Proof. For both directions of the proof, we use the characterization of recogniz-
ability via congruences (Prop. 3.6).

18

(⇒): Trivial, because Ginj is a subcategory of G , and thus we can use the
congruence for G also in the case of Ginj.

(⇐): Let ≡R be a congruence for LJ,K in the sense of Def. 3.5 for the category
Ginj. We now define an equivalence ≡′R on G and show that it is a congruence of
finite index.

For this we first need the notion of merger pairs. For a cospan c : J cL→ G
cR← K

the set M(c) of merger pairs consists of all pairs of cospans 〈mJ ,mK〉 of the form

mJ : J ′ id−→ J ′
mR

J←− J , mK : K
mL

K−→ K ′
id←− K ′

such that mR
J and mL

K are surjective and mJ ; c ; mK is an injective cospan. In
a sense the merger pairs induce an equivalence on the interfaces which relates
at least the interface items which have the same image under cL or cR. Further-
more, since we only deal with finite graphs, there are only finitely many “merger
cospans” up to isomorphism.

We now define ≡′R as follows: for two cospans c1 : J → G1 ← K and c2 : J →
G2 ← K it holds that c1 ≡′R c2 whenever M(c1) = M(c2) and for all 〈mJ ,mK〉 ∈
M(c1) we have mJ ; c1 ; mK ≡R mJ ; c2 ; mk. Note that for an injective cospan
c the pairs consisting of the identity cospans on J and K are among the merger
pairs and hence ≡′R is a refinement of ≡R. Furthermore it can be shown that ≡′R
is locally finite whenever ≡R is.

We now have to show that ≡′R is a congruence. For this take two cospans
c1 ≡′R c2 with ci : J → Gi ← K, where i ∈ {1, 2}, and another cospan d : K →
H ←M . We have to prove that c1 ; d ≡′R c2 ; d.

Now take a merger pair of c1 ; d, i.e., choose 〈mJ ,mM 〉 ∈M(c1 ; d). We will
show that there are cospans mK ,m

′
K such that 〈mJ ,mK〉 ∈M(c1), 〈m′K ,mM 〉 ∈

M(d) and mJ ; c1 ; d ; mM = mJ ; c1 ; mK ; m′K ; d ; mM . For this consider
the diagram below which represents the composition (mJ ; c1) ; (d ; mM) via
pushouts where the order of composition is indicated by the brackets.

J ′ //
��

//

J ′

@@

@@
@@

@ Joo // G1

~~||
||

||
|

Koo // H

@@

@@
@@

@ Moo // M ′

~~||
||

||
||

M ′oo
��

oo

G′1

((PPPPPPPPPPPPPP H ′

wwnnnnnnnnnnnnnn

H1

Note that the two “triangles” on the left and right are pushouts and that the
middle “pentagon” is also a pushout. In the following we will denote injective
morphisms by � and surjective morphisms by �.

Now consider the morphism K → H1 and take its factorization into a sur-
jective morphism K � K ′, followed by an injective morphism K ′ � H1. In
the category of graphs this factorization always exists and is unique. In addition
take the pushouts of K → G′1, K � K ′ and of K → H ′, K � K ′, obtaining

19

graphs G′′1 and H ′′ and corresponding mediating morphisms. Now the situation
is as follows:

J ′ //
��

//

J ′

@@

@@
@@

@ Joo // G1

~~||
||

||
|

K

����

oo // H

!!B
BB

BB
BB

B Moo // M ′

~~||
||

||
||

M ′oo
��

oo

G′1

((PPPPPPPPPPPPPP // // G′′1

K ′��

��

// //oooo H ′′

}}

H ′

vvmmmmmmmmmmmmmmm
oooo

H1

Note also that the morphisms J ′ → J ′ → G′1 → G′′1 and M ′ →M ′ → H ′ → H ′′

must be injective, since they split the injective morphisms J ′ → H1, M ′ → H1.

We will now show that the square K ′, G′′1 , H
′′, H1 commutes and that it is

a pushout. We are in the situation depicted on the left below where the outer
square is a pushout. We have K � K ′ � G′′1 � H1 = K → G′1 � G′′1 � H1 =
K → H ′ � H ′′ � H1 = K � K ′ � H ′′ � H1. And since K � K ′ is surjective
we can conclude that G′1 � G′′1 � H1 = G′1 � H ′′ � H1. Now assume a
commuting square K ′, G′′1 , H

′′, X as shown below on the right. Since the outer
square is a pushout we obtain a mediating morphism H1 → X. The triangles
G′′1 , H1, X and H ′′, H1, X commute since they commute if we precompose them
with the morphisms G′1 � G′′1 and H ′ � H ′′ respectively. Furthermore the
morphism H1 → X must be unique since any other mediating morphism would
also be a mediating morphism for the outer pushout.

K //

��

!! !!C
CC

CC
CC

H ′

����

K ′ // //
��

��

H ′′��

��

G′1 // // G′′1 // // H1

K //

��

!! !!C
CC

CC
CC

H ′

����

K ′ // //
��

��

H ′′��

��

��

G′1 // // G′′1 // //

//

H1

X

Hence we get mK : K � K ′
id← K ′ and m′K : K ′ id→ K ′ � K and from the

diagram above it follows that mJ ; c1 ; d ; mM = mJ ; c1 ; mK ; m′K ; d ; mM .
Since both mJ ; c1 ; mK and m′K ; d ; mM are injective cospans and c1 ≡′R c2,
we get mJ ; c1 ; mK ; m′K ; d ; mM ≡R mJ ; c2 ; mK ; m′K ; d ; mM .

It is now left to show that mJ ; c2 ; mK ; m′K ; d ; mM = mJ ; c2 ; d ; mM

and that this is an injective cospan. We first consider the diagram for (mJ ; c2) ;

20

(d ; mM).

J ′ //
��

//

J ′

@@

@@
@@

@ Joo // G2

~~||
||

||
|

Koo // H

@@

@@
@@

@ Moo // M ′

~~||
||

||
||

M ′oo
��

oo

G′2

((PPPPPPPPPPPPPP H ′

wwnnnnnnnnnnnnnn

H2

Next, we consider the factorization of K → G′2 into a surjective morphism
followed by an injective morphism, i.e.,

K → G′2 = K
sK

� KG � G′2

We construct the pushout of sK : K � KG and K → G′2 as shown below in two
steps. First we take the pushout of sK with itself, which gives us KG and the
identity morphisms since sK is surjective. Then we take the pushout ofKG � G′2
and the identity on KG, resulting in G′2.

K
sK // //

sK

����

KG
// //

id

��

G′2

id

��

KG
id
// KG

// // G′2

Now consider the cospan m̂ : K sK→ KG

id
� KG. Because of the considerations

above we can conclude that 〈mJ , m̂〉 ∈ M(c2) = M(c1). Furthermore we can
show that m̂ is uniquely characterized to be the most “general” partner for mJ .
Consider for instance another cospan mK : K → K ′ ← K ′ with 〈mJ ,mK〉 ∈
M(c2). Then we obtain the diagram below on the left.

K
sK // //

����

KG
// // G′2

����

K ′ // // G′′2

K
sK // //

����

KG
// // G′2

����

K ′ // //

>>

G′′2

Because of the diagonalization property of factorizations we obtain a unique
morphism KG → K ′ which makes the diagram commute (see diagram above on
the right). This property uniquely characterizes sK (up to isomorphism). The
same characterization holds for the factorization of K → G′1 (since the merger
pairs are identical) and we can conclude that K → G′1 factorizes into K

sK

�
KG � G′1. Now consider also the factorization of K → H into K � KH � H

21

and split the pushout of K → G′2 and K → H as shown below:

K // //

sK

����

KH
// //

����

H

����
KG

// //
��

��

K ′′��

��

// // •��

��

G′2 // // • // // H2

Hence taking the pushout of K � KG and K � KH gives us the unique factor-
ization of K → H2. The same is true in the case of H1 where the factorization
is K → H2 = K � K ′ � H1. Hence K ′ and K ′′ must be isomorphic.

Furthermore in the diagram for (mJ ; c2) ; (d ; mM) above we can split the
middle pushout in a way identical to the splitting of (mJ ; c1) ; (d ; mM) and
obtain a pushout consisting of K ′, G′′2 , H

′′, H2 (see below).

J ′ //
��

//

J ′

@@

@@
@@

@ Joo // G2

~~||
||

||
|

K

����

oo // H

!!B
BB

BB
BB

B Moo // M ′

~~||
||

||
||

M ′oo
��

oo

G′2

((PPPPPPPPPPPPPP // // G′′2

K ′��

��

// //oooo H ′′

}}

H ′

vvmmmmmmmmmmmmmmm
oooo

H2

This implies that mJ ; c1 ; d ; mM = mJ ; c1 ; mK ; m′K ; d ; mM . Furthermore
J ′ � H2 and M ′ � H2 must be injective: J � G′′2 is injective (since it is
the first leg of the injective cospan mJ ; c1 ; mK) and if we compose with
the injective morphism G′′2 � H2 we obtain J ′ � H2. Second M ′ � H ′′ is
injective (since it is the second leg of the injective cospan m′K ; d ; mM) and if
we compose with the injective morphism H ′′ � H2 we obtain M ′ � H2. Hence
we have M(c1 ; d) = M(c2 ; d) and this concludes the proof. ut

Corollary 5.5. Let a class LJ,K of graphs with edge-injective interfaces J,K be
called edge-injectively recognizable whenever LJ,K is recognizable in Geinj. Then
LJ,K is recognizable in G if and only if it is edge-injectively recognizable.

Proof. We adapt the proof of Prop. 5.4 by extending the notion of merger pairs.
For c : J → G ← K let Me(c) be the set of merger pairs 〈mJ ,mK〉 such that
mJ ; c ; mK is edge-injective. In addition let Ml(c) be the set of pairs of cospans
〈mJ ,mK〉 such that mJ ; c ; mK is edge-injective on the left leg and injective
on the right2. Clearly Ml(c) ⊆Me(c).

Given a congruence ≡R that characterizes LJ,K we now define ≡′R as follows:
for two cospans ci : J → Gi ← K, where i ∈ {1, 2} it holds that c1 ≡′R c2

2 This asymmetry is caused by the fact that we need a congruence with respect to
composition on the right.

22

whenever Ml(c1) = Ml(c2), Me(c1) = Me(c2) and for all (mJ ,mK) ∈Me(c1) we
have mJ ; c1 ; mK ≡R mJ ; c2 ; mk. Clearly ≡′R is a refinement of ≡R and it is
of finite index.

The rest of the proof carries through as before with some slight adaptations:
note that we obtain that J ′ → H1, M ′ → H1 are edge-injective (instead of
injective as before). Again we factorize K → H1 into an injective and surjective
morphism, i.e., K → H1 = K � K ′ � H1. Since we have Ml(c1) = Ml(c2) we
obtain a factorization K � K ′ � H2 for K → H2 with an identical morphism
K � K ′.

Hence the rest of the proof works as before, we only have to show that
Ml(c1 ; d) = Ml(c2 ; d) (and the same for Me). Take for instance 〈mK ,mM 〉 ∈
Ml(c1 ; d). In this case mK ; c1 ; d ; mM is edge-injective on the left and
injective on the right which means J ′ → H1 is edge-injective and M ′ � H1 is
injective. This implies that J ′ → G′′1 is edge-injective and M ′ � H ′′ is injective
(since they split (edge-)injective morphisms). Since K ′ � G′′1 and K ′ � H ′′ are
injective this means that 〈mJ ,mK〉 ∈Ml(c1) and 〈m′K ,mM 〉 ∈M(d). Hence also
〈mJ ,mK〉 ∈ Ml(c2) and we have that J ′ → G′′2 is edge-injective. So J ′ → H2

is edge-injective since we postcompose J ′ → G′′2 with the injective morphism
G′′2 � H2. And finally M ′ � H2 is injective since we post-compose M ′ � H ′′

with the injective morphism H ′′ � H1. ut

Proposition 5.6. Let a class LJ,K of graphs with discrete interfaces J,K be
called discretely recognizable whenever LJ,K is recognizable in Gdis. Then LJ,K
is recognizable in G if and only if it is discretely recognizable.

Proof. For both directions of the proof, we use the characterization of regularity
via congruences (Prop. 3.6).

(⇒): Trivial, because Gdis is a subcategory of G , and thus we can use the
congruence for G also in the case of Gdis.

(⇐): We use the result that whenever a language is edge-injectively recog-
nizable, then it is recognizable (Cor. 5.5). Hence it is sufficient to show that
whenever a language is discretely recognizable, then it is edge-injectively recog-
nizable. So let ≡R be a congruence on discrete cospans (as in Def. 3.5). We need
the following operator discr: let

c : J cL→ G
cR← K

be a cospan which is injective on edges. Now take as J ′,K ′ be the discrete
graphs underlying J,K (which are obtained by removing all edges). Furthermore
remove from G all edges that are in the image of cL. Now we get a new cospan
c′ = discr(c) : J ′ → G′ ← K ′.

Observe that we have discr(c1 ; c2) = discr(c1) ; discr(c2) whenever c1, c2 are
both edge-injective and c1 ; c2 is defined. This does not hold whenever c1, c2 are
not injective on edges since on the right-hand side of the equation fewer edges
might be merged.

Now define a new equivalence ≡′R, on edge-injective cospans, with c1 ≡′R c2
if and only if discr(c1) ≡R discr(c2). We now show that ≡′R is a congruence: let

23

c1 ≡′R c2. Then we have that

discr(c1 ; d) = discr(c1) ; discr(d) ≡R discr(c2) ; discr(d) = discr(c2 ; d) ,

which implies that c1 ; d ≡′R c2 ; d. ut

5.4. Equivalence of the two Notions of Recognizability

Definition A.3. Let J be a discrete graph with n nodes. We define the following
cospans with source J (See Fig. 1):

(i) Let s : K → J be a morphism from a discrete graph K to J . Then we
define:

redef s : J idJ−→ J
s←− K .

(ii) Let D be a discrete graph and t : J → D a morphism.

fuset : J
t−→ D

t←− J .

In the following we use the monoidal operation ⊕ which is the disjoint sum on
cospans. Formally it is obtained by taking the coproducts of the middle graph
and of the inner and outer interfaces. The new interface morphisms are then
obtained as mediating morphisms.

Lemma A.4. Let the n-node discrete graph J and cospan c : ∅ → G ← J be
given.

(i) Let σ : Nm → Nn be a function. For each m-node discrete graph K there
exists an arrow s : K → J such that

bend(c ; redef s) = redefσ(bend(c)) .

(ii) Let θ be an equivalence relation on Nn. There exist a discrete graph D and
arrow t : J → D such that

bend(c ; fuset) = fuseθ(bend(c)) .

Proof. (i) We consider σ as a graph morphism from Dism to Disn and take
s = di−1

K ; σ ; diJ . The composed cospan c ; redef s now looks like

(c ; redef s) : ∅ cL−−−→ G
s;cR←−−− K .

Then we do (because J and K are discrete, we confuse graph morphisms and
functions on nodes):

bend(c ; redef s) = 〈G, diK ; s ; cR〉
= 〈G, diK ; di−1

K ; σ ; diJ ; cR〉
= 〈G, σ ; diJ ; cR〉
= redefσ(〈G, diJ ; cR〉)
= redefσ(bend(c)) .

24

(ii) Let θmap be the function which maps each element of Nn to its respective
θ-equivalence class, let D be the discrete graph with node set {[[k]]θ | k ∈ Nn}
and define the arrow t as t = di−1

J ; θmap. Because cospan composition is define
by a pushout, the cospan (c ; fuset) is the same as c but with the nodes fused
according to θ. ut

Lemma A.5. For cospans c : ∅ → G ← J and d : ∅ → H ← M it holds that
bend(c⊕ d) = bend(c)⊕ bend(d).

Proof. From the following equation:

bend(c⊕ d) = 〈G⊕H, diJ⊕K ; cR ⊕ dR〉
= 〈G⊕H, (diJ ; cR)� (diK ; dR)〉
= 〈G, diJ ; cR〉 ⊕ 〈H, diK ; dR〉
= bend(c)⊕ bend(d) .

ut

Lemma A.6. Let cospans c : I → G ← J and d : J → H ← K be given, where
I has m nodes, J has n nodes and K has k nodes. Then:

bend(c ; d) = redefσ(fuseθ(bend(c)⊕ bend(d))) ,

where σ : Nm+k → Nm+2n+k is defined as

σ(x) =
{
x+ 2n if x ≥ m
x otherwise,

and θ is the smallest equivalence relation on Nm+2n+k, which, for m ≤ x < m+n,
relates x to x+ n.

Proof. We have that:

M0 = bend(c)⊕bend(d) = 〈G⊕H, (diI ; cL)� (diJ ; cR)� (diJ ; dL)� (diK ; dR)〉

The cospan composition of c and d looks as follows:

I G

J

M

H K
cL

cR

f

dL

g

dR(PO)

Because the middle diamond is a pushout, we have that

M′0 = fuseθ(M0) =
〈M, (diI ; cL ; f)� (diJ ; cR ; f)� (diJ ; dL ; g)� (diK ; dR ; g)〉 .

25

Finally,
M = redefσ(M′0) = 〈M, (diI ; cL; f)� (diK ; dR; g)〉 .

On the other hand, a simple application of the definition reveals that

bend(c ; d) = 〈M, (diI ; cL; f)� (diK ; dR; g)〉 ,

as required. ut

Lemma A.7. Let c : ∅ → G← J , d : ∅ → H ← J , c′ : ∅ → G′ ← K and d′ : ∅ →
H ′ ← K be cospan, and ≡R a congruence on cospans. If bend(c) = bend(c′) and
bend(d) = bend(d′) then it holds that c ≡R d if and only if c′ ≡R d′.

Proof. Follows from the fact that if bend(c) = bend(c′) and bend(d) = bend(d′),
an isomorphism f : K → J exists such that cR = f ; cR′. This allows us to
construct the cospan

e : J idJ−→ J
f←− K

such that c ; e = c′ and d ; e = d′, which, because ≡R is a congruence by
assumption, proves the left-to-right direction of the proof. The other direction
works symmetrically. ut

Theorem 5.9. Let J be a discrete graph. A set of graphs L is the (∅, J)-language
of some automaton functor A if and only if bend(L) is Courcelle-recognizable.

Proof. (⇒) By Prop. 3.6 there exists a locally finite congruence ≡R = {RJ,K |
K,M are discrete graphs} such that L is the union of some R∅,J -equivalence
classes. We define:

bend(c) ≡C bend(d) if c ≡R d .

This is well-defined because of Lemma A.7 and the fact that bend is surjective.
We now show that ≡C is a congruence in Courcelle’s sense.

– Redefinition and fusion. Let G = 〈G, ζG〉, H = 〈H, ζH〉 be n-ary graphs such
that G ≡C H, and consider the cospans

c : ∅ cL−→ G
cR←− J d : ∅ dL−→ H

dR←−− J

such that bend(c) = G and bend(d) = H. By definition it holds that c ≡R d.
By Lemma A.4 (i) redefσ(G) = bend(c ; redef s) and redefσ(H) = bend(d ;
redef s) (for suitably chosen s). Because ≡R is a congruence, and c ≡R d, it
holds, by definition, that redefσ(G) ≡C redefσ(H), as required. In the case
of fusion, we arrive at the result analogously, by using Lemma A.4 (ii).

– Disjoint union. Let G1,H1 be n-ary graphs, and G2,H2 m-ary graphs, such
that Gi ≡C Hi, for i ∈ {1, 2}. Consider cospans c1, c2, d1, d2 such that
bend(ci) = Gi and bend(di) = Hi. By definition, it holds that ci ≡R di.
By Lemma A.5 it holds that G1 ⊕ G2 = bend(c1 ⊕ c2) and H1 ⊕ H2 =
bend(d1 ⊕ d2). Since it holds that

c1 ⊕ c2 = c1 ; (idJ1 ⊕ c2) ≡R d1 ; (idJ1 ⊕ c2)
= c2 ; (d1 ⊕ idJ2) ≡R d2 ; (d1 ⊕ idJ2) = d1 ⊕ d2 ,

by definition it must be the case that G1 ⊕G2 ≡C H1 ⊕H2.

26

(⇐) Let the congruence ≡C in the sense of Courcelle be given. We define the
relation ≡R as follows:

c ≡R d if bend(c) ≡C bend(d) .

We show that ≡R is a congruence. Let the following cospans be given:

c : I → G← J bend(c) = G
d : I → H ← J bend(d) = H
p : J →M ← K bend(p) = M ,

where c ≡R d. We need to show that (c ; p) ≡R (d ; p). By definition, it holds
that G ≡C H, and since ≡C is a congruence, it holds that

redefσ(fuseθ(G⊕M)) ≡C redefσ(fuseθ(H⊕M)) ,

where σ, θ are as given in Lemma A.6. By the same lemma, it holds that

bend(c ; p) = redefσ(fuseθ(G⊕M))
bend(d ; p) = redefσ(fuseθ(H⊕M)) ,

and therefore, by definition, (c ; p) ≡R (d ; p), as required. ut

27

