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Abstract: Adaptable user interfaces (UI) have shown a great variety of advantages
in human computer interaction compared to classic UI designs. We show how adapt-
able UIs can be built by introducing coloured Petri nets to connect the UI’s physi-
cal representation with the system to be controlled. UI development benefits from
formal modelling approaches regarding the derived close integration of creation, ex-
ecution, and reconfiguration of formal UI models. Thus, adaptation does not only
change the physical representation, but also the connecting Petri net. For the latter
transformation, we enhance the DPO rewriting formalism by using an order on the
set of labels and softening the label-preserving property of morphisms, i.e., an ele-
ment can also be mapped to another element if the label is larger. We use lattices
to ensure correctness and state application conditions of rewriting steps. Finally we
define an order compatible with our framework for the use in our implementation.

Keywords: Coloured Petri Nets, Rewriting, User Interface Modelling, Redesign
and Reconfiguration, Lattices

1 Introduction

Modelling in user interface creation has a long tradition, starting in the 1980th with cognitive
architectures, such as GOMS and CTT [CMN80, KP85], or later approaches for modelling user-
system dialogues [JWZ93]. As known from software engineering [HJSW10], the gap between
model and implementation is often a great issue in the design of systems, also affecting the
creation of interactive systems and user interfaces. One possible solution to reduce this gap
is the use of formal modelling approaches, which can be executed on the computer without
further need of extra implementation. Various examples can be found regarding creation and
modelling of user interfaces using formal methods, such as works published by Navarre et al.
[NPLB09]. Still, resulting models are often inflexible and static, lacking of formal and model-
intrinsic adaptation and reconfiguration approaches. Especially regarding the implementation of
adaptable UIs, a full-fledged modelling and reconfiguration concept is necessary. Adaptable UIs
extend UIs by software support to enable the user to change the UI according to his preferences.

For this we developed a coloured Petri net-based [Jen97] modelling approach for creating
formal user interface models [Wey12, WBLK12] accompanied with an extended graph rewriting
concept introduced in this paper. The combination of using coloured Petri nets and rewriting
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Lattice-extended CPN Rewriting for Adaptable UI Models

creates an executable modelling approach paired with a formal adaptation allowing the creation
of flexible and reconfigurable user interface models, thus realising adaptable UIs.

Rewriting of P/T nets has already been considered for instance in [EHP06, LO04], where
the latter focuses on linking transformations of the nets structure and marking. Properties of
coloured Petri nets, such as types or guard conditions, are modelled by labels on places, transi-
tions and arcs, and a greater modelling flexibility can be achieved by a formalism including the
possibility of relabelling. However, this is in conflict with the often used restriction that rules
(i.e. morphisms) preserve labels. One approach is to allow non-labelled elements in rules, which
is done in [HP02, Ros75], such that the label of an element will change if its interface node is
unlabelled. In our approach we introduce an order on the labels (later called inscriptions) and al-
low rules to be applied to elements with possibly larger labels. With sufficiently complex labels,
a rewriting step can partly rewrite a label, letting the rest of the label untouched. A very similar
idea was presented in [PEM87], interestingly using orders with reversed direction compared to
ours. Although more flexible wrt. the orders they need quite elaborate application conditions
while we obtain simpler results (and proofs) by using lattice theory [Bir67] and are able to use
non-injective morphisms in rules. Note that it is also possible to combine a rewriting formalism
for the nets structure and with one for the labels, but this will result in higher complexity.

In the next section we develop two rewriting formalisms based on the so-called DPO approach.
The first one is a straightforward extension of DPO to our morphisms, while the other prefers
deletion of (parts of) labels, in the case of a conflict. In Section 3 and 4 we show how our
approach can be used to realize adaptive user interfaces based on XML inscriptions. This paper
is a long version of [SW14], additionally containing the proofs in Appendix A.

2 Coloured Petri Net Rewriting with Lattices

Since our focus lies on the rewriting formalism, we consider Petri nets as special kinds of graphs
which can be transformed as described in [Roz97]. We will not define the semantics of coloured
Petri nets [Jen97] and just assumes the existence of inscriptions of transitions, places, and arcs.
In practice these inscriptions are often used to model guard conditions or typing tokens.

Definition 1 (In-Coloured Petri Net) An In-coloured Petri net is a 6-tuple (P,T,E,In,c, in)
with P a set of places, T a set of transitions, and E a set of edges where P, T , and E are pairwise
disjoint. The function c ∶ E → (P×T)∪(T ×P) defines the source and target of each edge. In
is a (possibly infinite) set of inscriptions and the total function in ∶ (P∪T ∪E) → In assigns an
inscription to each element of the net.

Often, transformation formalisms can only change inscriptions by deleting and recreating the
corresponding objects, since morphisms are usually required to preserve inscriptions. Exceptions
are for instance [HP02, Ros75], where labelling functions can be partial and [PEM87], which
uses orders on inscriptions. We pursue the latter approach by extending the notion of morphisms
with orders and using lattices [Bir67] to order inscriptions.

Definition 2 (Total ⊑-Morphisms on In-Coloured Petri Nets) Let ⊑ be a partial order on the set
of inscriptions In. A total ⊑-morphism r ∶A→B on coloured Petri nets A = (PA,TA,EA,In,cA, inA)
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and B = (PB,TB,EB,In,cB, inB) is a triple (rP,rT ,rE) of the three total morphisms rP ∶ PA → PB,
rT ∶ TA→ TB, and rE ∶ EA→ EB, such that the following conditions hold (omitting indices or r):

∀e ∈ EA with cA(e) = (x,y) ∶ cB(r(e)) = (r(x),r(y)) and

∀x ∈ (PA∪TA∪EA) ∶ inA(x) ⊑ inB(r(x))

A ⊑-morphism is an isomorphism if it is injective, surjective and inscription preserving, i.e. in
the second condition above equality holds.

Definition 3 (Complete lattice) A complete lattice is a pair (L,⊑), where L is a set and ⊑ is a
partial order on L. Furthermore, for every set L′ ⊆ L there is an infimum (greatest lower bound)
⊓L′ ∈ L such that: 1) for all l ∈ L′, ⊓L′ ⊑ l holds, and 2) for all l′ satisfying the first condition,
if ⊓L′ ⊑ l′, then ⊓L′ = l′. Analogously, there is a supremum (least upper bound) ⊔L′ ∈ L such
that: 1) for all l ∈ L′, l ⊑⊔L′ holds, and 2) for all l′ satisfying the first condition, if l′ ⊑⊔L′, then
⊔L′ = l′. As shorthand we use l1⊔ l2 and l1⊓ l2 to denote ⊔{l1, l2} and ⊓{l1, l2} respectively.

We call a lattice join-infinite distributive if m⊔(⊓l∈L′ l) = ⊓l∈L′ (m⊔ l) and meet-infinite dis-
tributive, if m⊓(⊔l∈L′ l) = ⊔l∈L′ (m⊓ l) holds for all m ∈ L and L′ ⊆ L.

Note that our definition of a morphism is equal to the inscription preserving definition, if an
identity relation ⊑ is used. In the following our inscription sets will not be ordinary lattices, but
disjoint unions of complete lattices, i.e. (In,⊑) is a partial ordered set such that there is a partition
ΠL over L where (Π,⊑ ∩(Π×Π)) is a complete lattice for every Π ∈ ΠL and if x ⊑ y, then there
is a Π ∈ΠL with {x,y} ⊆Π. We use CPN [In,⊑] to denote the category of In-coloured Petri nets
where In has this form. Note that the label preserving case is subsumed by our approach since
any identity relation also forms a disjoint union of complete lattices.

The double pushout approach (DPO) is based on the notion of pushouts and pushout comple-
ments. These constructions are used to add (former) and delete (latter) elements of a net in a
rewriting step.

Definition 4 (Pushouts) Given two morphisms f ∶ A→ B and g ∶ A→C, the triple (D, g′ ∶ B→
D, f ′ ∶C→D) is called a pushout of ( f ,g), if: 1) g′○ f = f ′○g, and 2) for all nets E and morphisms
f ∗ ∶C→ E and g∗ ∶ B→ E that fulfil the former constraint, there is an unique morphism h ∶D→ E
with h○g′ = g∗ and h○ f ′ = f ∗.

We call (C,g, f ′) the pushout complement of ( f ,g′) if (D,g′, f ′) is a pushout of ( f ,g).

An example of a pushout can be seen in Figure 1, where the morphisms are indicated by
position with the exception of the two places in A which are non-injectively mapped to the same
place in B. The pushout contains the elements of B and C, but merges elements related via A,
i.e. elements are merged if they share a common preimage in A. The labels of elements in D are
thereby the supremum of the labels of all their preimages in B and C. Thus, D can be seen as the
smallest merging of B and C via the interface A. We state the existence of pushouts and pushout
complements in our setting by the following two lemmas.

Lemma 1 For ⊑-morphisms b ∶ A→ B and c ∶ A→C the pushout exists in CPN [In,⊑] and is
unique up to isomorphism.
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A B

C D

{a} {b} {a,b}

{c}

{a,b} {b}

{c}

{a,b}

{c}{c}

f

g g′

f ′

Figure 1: Example of a pushout using the lattice
(P({a,b,c}),⊆) as inscriptions.

A B

C D

{a}

{a,b}

f

g′

Figure 2: Example morphisms,
where no pushout complement
exists

Lemma 2 For morphisms b ∶ A→ B and d ∶ B→ D the pushout complement in the category
CPN [In,⊑] exists, if and only if the following conditions hold:

• for every x ∈ PB ∪ TB without a preimage in A, d(x) is only connected to edges with a
preimage in B (dangling edge condition),

• for every x,y ∈ PB ∪TB ∪EB, if d(x) = d(y) and x ≠ y, then x and y have preimages in A
(identification condition), and

• for every x ∈ PB ∪TB ∪EB without a preimage in A, inB(x) = inD(d(x)) holds (inscription
condition).

The first two conditions of Lemma 2 are well-known conditions for the existence of pushout
complements for general graphs. The last condition is illustrated in Figure 2. The place in D
cannot have a preimage in C, since the pushout of B and C would contain two places, but then D
is not minimal since the inscription would have to be {a}. Thus, no pushout complement exists
in this case.

Note that pushout complements in CPN [In,⊑] are not necessarily unique, even if all involved
morphisms are injective. We approach this ambiguity by introducing the notions of preservation-
focused and deletion-focused rewriting. While the first one arises from a natural refinement of
DPO rewriting, the latter notion prefers deletion to preservation when rewriting inscriptions and
its application is illustrated in more detail in Section 3.

Definition 5 (DPO Rule and Matching) A (DPO) ⊑-rule ρ is a pair of ⊑-morphisms l ∶ I → L
and r ∶ I→ R. A ⊑-match of a rule ρ to a net N is a ⊑-morphism m ∶ L→N.

Definition 6 (Preservation-Focused Rewriting) Let l ∶ I → L and r ∶ I → R be a rule and let
m ∶ L→ N be a match of the rule in N. A net N can be rewritten to a net N′ if there is a minimal
pushout complement C, m′ ∶ I→C, l′ ∶C→N such that N′ is isomorphic to the pushout of m′ and
r. A pushout complement C is minimal if for all pushout complements D, m′′ ∶ I→D, l′′ ∶D→N
it holds that if there exists an injective ⊑-morphism k ∶D→C with m′ = k○m′′ and l′′ = l′ ○k, then
k is an isomorphism.
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We call a rule preservation-applicable, if at least one pushout complement exists.

When using preservation-focused rewriting, inscriptions are rewritten in the classical DPO
sense. A rule application tries to delete the ”difference” between an inscription in L and its
preimage in I from its image in N. If this deletion is not possible, the deletion is not performed.
However, the rule is still preservation-applicable (taking the conditions of Lemma 2 into ac-
count), but the inscription remains unchanged, as demonstrated in the following example.

Example 1 Figure 3a shows the minimal pushout complement using the lattice (P({a,b}),⊆),
since {b} is the smallest inscription such that {b}⊔{a} = {a,b}. The rule can simply delete the
’a’ part of the inscription {a,b} to obtain {b}. However, this is not always possible as shown in
Figure 3b, where the lattice in Figure 3c is used. This lattice does not contain {b} such that {a,b}
is now the minimal inscription. Effectively the inscription remains unchanged although the rule
specifies a (partial) deletion. Note that Figure 3b is also a pushout complement if (P({a,b}),⊆)
is used, although it is not minimal in that case.

L I

N C

{a} ∅

{a,b} {b}

(a) The minimal pushout complement us-
ing the lattice (P({a,b}),⊆)

L I

N C

{a} ∅

{a,b} {a,b}

(b) The minimal pushout complement us-
ing the lattice shown in Figure 3c

{a,b}

{a}

∅
(c) Hasse diagram
of a lattice

Figure 3: A preservation-focused rule application using two different (distributive) lattices

In general a preservation-focused rewriting step generates a set of rewritten nets, but we can
state the following uniqueness criterion.

Proposition 1 Let ρ be a ⊑-rule where the left leg is injective and let m be a ⊑-match such that
ρ is preservation-applicable to some net N. The preservation-focused application of ρ to N via
m results in a unique net N′ (up to isomorphism) if the set of inscriptions of N is a disjoint union
of lattices and each lattice is join-infinite distributive.

In preservation-focused rewriting, places, transitions and arcs with larger inscriptions than
their preimage in L cannot be deleted due to the third condition of Lemma 2 and inscriptions
may remain unchanged even if the rule specifies otherwise. These properties are not always
desired, for instance not in our application presented in Section 3 and 4. Therefore, we present
an alternative approach which deletes as much of the inscriptions as necessary in these situations.
As an auxiliary construction we define a functor mapping form CPN [In,⊑] to CPN [In,=], the
category where ⊑ is the identity. The functor effectively removes the inscriptions.
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Definition 7 (Forgetful functor) Let F ∶ CPN [In,⊑] → CPN [In,=] be a functor. For every
object A = (PA,TA,EA,In,cA, inA) of CPN [In,⊑] we define F(A) = (PA,TA,EA,In,cA, in′A) with
in′A(x) =⊓Π for all x ∈ PA∪TA∪EA, where inA(x) ∈Π for some element Π of the partition ΠIn of
In. For every arrow m ∶ A→ B we define F(m)(x) =m(x) for all x ∈ PA∪TA∪EA.

Definition 8 (Deletion-Focused Rewriting) Let l ∶ I→ L and r ∶ I→R be a rule and let m ∶ L→N
be a match of the rule in N. A deletion-focused rewriting step is performed in the following way:

1. Calculate a pushout complement N′ = (PN′ ,TN′ ,EN′ ,In,cN′ , inN′) of F(l) and F(m) with
morphisms m′ ∶ F(I) →N′, l′ ∶N′→ F(N).

2. For every x ∈N′ let the set of inscriptions Ix be defined as follows:

Ix = {z ∈ In ∣ (∀x′ ∈ I ∶ (m′(x′) = x⇒ z⊓ inL(l(x′)) = inI(x′)))∧ z ⊑ inN(l′(x))}.

If Ix is non-empty for all x ∈ N′, construct a net N′′ = (PN′ ,TN′ ,EN′ ,In,cN′ , inN′′) where
inN′′(x) is any maximal element of Ix and the morphisms m′′ ∶ I → N′′, l′′ ∶ N′′ → N with
m′′(x) =m′(x), l′′(x) = l′(x).

3. Calculate the pushout of m′′ and r to obtain the rewritten Petri net M.

We call a rule deletion-applicable if the first two conditions of Lemma 2 hold and for at least one
net N′ calculated in the first step, Ix is non-empty for all x ∈N′.

By construction m′′ and l′′ defined in Definition 8 are valid ⊑-morphisms and the diagram
l′′ ○m′′ =m○ l commutes, but is not necessarily a pushout. The application condition differs from
preservation-focused rewriting and arises from conflicts shown in Figure 4b.

L I

N C

{a} ∅

{a,b} ∅

(a) Deletion-focused rewriting of the example
in Figure 3b

L I

N C

{a} {a} {a} ∅

{a,b} ?

(b) Example of a rule which is not deleting ap-
plicable

Figure 4: Examples of deletion-focused rewriting steps

Example 2 Figure 4a shows the deletion-focused rewriting step applied to the example in Fig-
ure 3b using the lattice in Figure 3c. We search for every inscription z for which z⊓{a} = ∅
holds and which is also smaller or equal to {a,b}. Since ∅ is the only possibility, it is a maximal
element. Effectively, since there is no inscription containing b without a, the deletion of a from
{a,b} also deletes b. Figure 4b shows a conflict, such that the rule is not deletion-applicable. The
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rule specifies a preservation and a rewriting of the same inscription, such that Ix is empty for the
node in C. The node cannot be labelled with ∅ since then m′′ would not be a valid ⊑-morphism.
Note that in this case a pushout complement does exist.

Although ambiguous in the general case, we can state a uniqueness criterion for deletion-
focused rewriting which is analogue to Proposition 1.

Proposition 2 Let ρ be a ⊑-rule where the left leg is injective and let m be a ⊑-match such that
ρ is deletion-applicable to some net N. The deletion-focused application of ρ to N via m results
in a unique net N′ (up to isomorphism) if the set of inscriptions of N is a disjoint union of lattices
and each lattice is meet-infinite distributive.

3 Deletion-focused PNML rewriting

The Petri Net Markup Language (PNML) is a well established XML-based format for making
Petri net-based models persistent [HKK+09]. Therefore, we use PNML in our implementation
as basis for describing so-called reference nets [Kum02]. These are coloured Petri nets where
the tokens are references to objects in a class hierarchy and also support code execution when
firing transitions. We clarify how rewriting steps will be performed in this setting, by defining a
mathematical model for XML below. This also illustrates how our rewriting formalisms can be
implemented in practice.

In this setting, inscriptions are XML nodes, and hence have a tree-like structure. We will show
that they form a disjoint union of lattices compatible with our rewriting formalisms. We assume
that XML nodes are distinguishable by an ID (which can be the node name or a designated
attribute) and the order on child nodes (but not the content of nodes) is negligible. Furthermore,
every XML node has a value (possibly a tuple) which describes its properties, such as attributes,
excluding child nodes. We use ⊎ to denote the disjoint union.

Definition 9 (XML Inscription) Let (Val,t) be a disjoint union of complete lattices Vali of
values with ⊎i∈I Vali = Val and let N be a set of IDs, which is sorted such that it can be parti-
tioned in Ni with N = ⊎i∈I Ni. An XML inscription xmlN,Val is a directed rooted tree (V,E,r,γ)
of finite height, where V is a set of vertices, E ⊆ V ×V is a set of edges, r ∈ V is the root
and γ ∶ V → ⋃i∈I(Ni ×Vali) maps properties to each vertex. Additionally for every two edges
(v1,v2),(v1,v3) ∈ E with γ(vi) = (ni,wi) (for i ∈ {2,3}) it holds that n2 ≠ n3.

For every v ∈V we define v↓ = (V ′,E ′,v,γ ′) to be the subtree of xmlN,Val with root v, which is
an XML inscription itself.

Definition 10 Let XMLN,Val be the set of all XML inscriptions xmlN,Val. We define the ordered
set (XMLN,Val,⊑), where for two elements (V1,E1,r1,γ1) ⊑ (V2,E2,r2,γ2) holds if and only if: let
γi(ri) = (ni,wi) for i ∈ {1,2}, then n1 = n2, w1 tw2, and for all v1 ∈V1 with (r1,v1) ∈ E1 there is a
v2 ∈V2 with (r2,v2) ∈ E2 such that v1↓ ⊑ v2↓.

Lemma 3 (XMLN,Val,⊑) is a disjoint union of complete lattices, provided Val is.
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The proof of Lemma 3 is based on the following observations: each lattice In within XMLN,Val
consists of all inscriptions, where the ID of the root elements are equal. The supremum exists
if and only if this is the case and can be computed inductively as follows. Let L ⊆ In be a non-
empty subset of In where root elements have ID k. For every ID n ∈ N, we define C⊔

n (L) = {v↓ ∣
(V,E,r,γ) ∈ L,(r,v) ∈ E,γ(v) = (n,w)}, the set of all direct subinscriptions of inscriptions of L,
where the root ID is n. Furthermore, let M = {n ∈ N ∣C⊔

n (L) ≠ ∅} be the set of all IDs for which
child nodes exist and let (Vm,Em,rm,γm) = ⊔C⊔

m(L) be their supremum for each m ∈ M. The
supremum of L can be expressed as follows:

⊔L = ({x}⊎ ⊎
m∈M

Vm,{(x,v) ∣ v ∈ {rm ∣ m ∈M}}⊎ ⊎
m∈M

Em,x,γ ′),

where γ
′(y) = γm(y) for y ∈Vm and γ

′(x) = (k,
l∈L wl) with l = (Vl,El,rl,γl) and γl(rl) = (k,wl).
The infimum can be expressed in an analogous way, with the exception that C⊓

n (L) =C⊔
n (L) if

every inscription of L has a child with ID n and C⊓
n = ∅ otherwise.

Example 3 To illustrate the use of (XMLN,Val,⊑), we give a complete deletion-focused rewriting
step in Figure 5. The rule as well as the rewritten nets are show in Figure 5a. For clarity,
the inscriptions of the shown transitions are displayed separately in Figure 5b. Inscriptions of
arcs have a root ID ia and either a variable (x or y) or no variable (�a with x,y ⊒ �a) as value.
Root elements of inscriptions of transitions have always the ID it and value �t , but have a more
complex substructure. This can consist of a guard condition g (a boolean expression preventing
firing), an action a (assigning the result of an arithmetic to a variable when firing) and a style s
(describing the visual appearance). The style can consist of a position p and a colour c.

(ia,�a)

(ia,�a)
α

L

(ia,�a)
(it ,�t)

I

(ia,�a)
β

R

(ia,x)

(ia,y)
γ

N

(ia,x)
γ
′

N′

(ia,x)
γ
′′

N′′

(a) Deletion-focused rewriting us-
ing (XMLN,Val,⊑) as inscriptions

(it ,�t)

(a,�a)

α

(it ,�t) (it ,�t)

(s,�s)

(c,red)

β

(it ,�t)

(g,x ≤ 10)
(a,y = 2 ⋅x)

(s,�s)

(p,(10,10))

γ

(it ,�t)

(g,x ≤ 10) (s,�s)

(p,(10,10))

γ
′

(it ,�t)

(g,x ≤ 10) (s,�s)

(p,(10,10))(c,red)

γ
′′

(b) Shows how the inscriptions of the transitions in Figure 5a are rewritten

Figure 5: Example of a deletion-focused rewriting of an XMLN,Val-coloured Petri net

The given rule can be matched to any net N that contains a transition with one incoming arc,
one outgoing arc, and an action with any value. In the first step, it deletes the outgoing arc and the
action to generate the net N′. The inscription γ

′ is the largest inscription satisfying γ
′⊓α = (it ,�t)

as well as γ
′ ⊑ γ , since the existence of an action in γ

′ would cause γ
′⊓α to contain an action as
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well. Note that N′ is not a pushout complement (which does not exist), since the inscription of
the deleted arc is strictly larger than its preimage in L, thus, the rule is not preservation-applicable
to N. In the second step, the pushout N′′ is generated by calculating the supremum γ

′′ = γ
′⊔β ,

which contains all merged subinscriptions of both γ
′ and β . The value of it in γ

′′ is generated by
the supremum of its values in γ

′ and β , i.e. by �t ⊔�t = �t (the same holds for s). Effectively the
transition is marked with the colour red, without changing other layout properties.

In addition to the previous result, we can show that our approaches rewrite uniquely, if the
lattices of values are meet-infinite or join-infinite distributive.

Lemma 4 Every lattice of (XMLN,Val,⊑) is meet-infinite (or join-infinite) distributive, if every
lattice of Val is meet-infinite (or join-infinite) distributive.

4 Application to User Interface Reconfiguration

Adaptable UIs offer a great benefit to human-computer interaction, according to the fact that
those UIs can be adapted to the user’s personal preferences and abilities. The use of a formal
modelling approach in this context offers the opportunity to close the gap between modelling
and execution of UIs on the one hand and the implementation of adaptable UIs in a full-fledged
computer-processable format on the other. Based on a two-layered representation of a UI, we
developed a visual modelling language for interactive modelling of interaction logic by experts.
Interaction logic can be defined as a data processing layer, modelling data-based communication
between the physical representation and the system to be controlled. The physical representation
is the second layer of the UI that directly interacts with the user and can be specified as a set of
widgets, such as buttons, sliders, or text fields, etc. In the interaction logic, events are being pro-
cessed that occur after, e.g., the user pressed a button or after he used another interaction element
of the physical representation. Vice versa, data emitted from the underlying system is prepared
to be presented to the user via the physical representation. Beside this data-based communica-
tion between user and system (also called business logic), also dialogue-specific structures are
specified in interaction logic. Here, data-based dependencies between input events and system
data can influence interaction by predefined logic conditions.

For visually modelling, a graph-based visual language called FILL [Wey12] has been devel-
oped, that is transformed into reference nets as introduced by Kummer [Kum02]. The reason for
this is motivated by various aspects, such as that the transformation defines a formal semantic
for FILL, reference net-based interaction logic is executable using the implemented open-source
simulator RENEW [KWD], and finally, interaction logic is accessible for formal graph rewriting
concepts, as described in the paper at hand. Thus, based on this transformation and the rewriting
approaches introduced, the full-fledged concept required for the development of formal adaptable
UIs is provided.

For modelling user interfaces using FILL, a visual and interactive editor has been developed,
called UIEditor1. The editor is separated into two visual editors to (a) model the physical repre-
sentation of a visual user interface and (b) to model interaction logic using FILL. For execution

1 www.uieditor.org

9 / 19



Lattice-extended CPN Rewriting for Adaptable UI Models

of the user interface model, the UIEditor offers a simulation component, which is also capable to
transform FILL models into reference nets. Thus, a computer parseable representation of such
a reference net has to be provided. We decided to use PNML, which is the main reason for ap-
plying the lattice-extended rewriting approach to PNML in Section 3. The whole transformation
algorithm has been described in [Wey12, pg. 44–84]. A third component implements interactive
reconfiguration, as it will be described in more detail, below, which is responsible for interac-
tively creating rewriting rules. This interactive creation is the major aspect of implementing
adaptable user interfaces, since the engineer modelling the UI is not able to foresee all possible
adaptations a user could have in mind. Hence, the changes in the UI – both in the physical repre-
sentation and the interaction logic – should be controlled by the user and need not be predefined
by the application provider (although this is also possible).

Using graph transformation to change interaction logic, the behaviour of a given user interface
can be adapted to certain requirements. Paired with the ability of reference nets to be executed
based on simulation, the changes can be directly tested and used in an application scenario. For
instance, in [WBLK12] such an scenario has been described, where users were asked to recon-
figure an initially given user interface of a simple simulation of a steam water reactor according
to a variety of trained control tasks. These tasks were embedded to a controlling scenario of
the reactor simulation. Here, the user has to start and stop the reactor, or to handle upcoming
system errors, such as the blackout of a water pump. In a test run, two groups were asked to
perform these tasks in a predefined test scenario [BWKL13]. The experiment group was able
to interactively reconfigure the user interface by choosing from a predefined set of operations,
where the control group did not have this option. The users were able to combine various buttons
to one, which was able to perform all operations in parallel, that were former triggered by the
selected buttons. Furthermore, users were able to discretize a continuous input operation, e.g.,
represented as a slider widget. For instance, a user can select a slider, chose the discretization op-
eration, and define the discrete integer value that should be settable by a newly generated button.
The rewriting rule generated for such an adaptation is shown in Figure 6, including an exemplary
rule application.

(ia,�a)

(ia,n)
α

L

(ia,�a)

(ia,n)
(it ,�t)

I

(ia,�a)

(ia,n)
β

R

(ia,r)

(ia,n)
γ

N

(ia,r)

(ia,n)
γ
′

N′

(ia,r)

(ia,n)
γ
′′

N′′

(a) Structure of the discretization rule

(it ,�t)

(a, Number n =
slider.getValue();)

α

(it ,�t) (it ,�t)

(a,Integer n = 700;)

β

(it ,�t)

(g,r ≥ 10)
(a, Number n =

slider.getValue();)

γ

(it ,�t)

(g,r ≥ 10)

γ
′

(it ,�t)

(g,r ≥ 10)

(a,Integer n = 700;)

γ
′′

(b) Inscriptions changed by the discretization rule (a abbreviates ac-
tions, g abbreviates guard conditions)

Figure 6: Example of the rewriting rule for the discretization, including an application
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All reconfiguration operations were applied to reference net-based interaction logic using
deletion-focused PNML rewriting in a two step process. In the first step, the user interactively se-
lected the interaction elements that should be affected (e.g. the slider), as well as the reconfigura-
tion operation (e.g. discretization) that should be applied. The second step has been implemented
algorithmically and was responsible for selecting the affected graphical parts of interaction logic
(e.g. the button) and generating the XML-based graph rewriting rule, containing all parts to be
changed and being applied to interaction logic afterwards. In Figure 6a the resulting rule of
the discretization operation can be seen where the inscriptions are show Figure 6b. Here, the
lattice uses class inheritance to define a rule pattern which can match various number types in
the inscription, such as Double or Integer. The new transition generates a specific integer value
implementing the functionality of the new button, while the guard condition remains unchanged,
since it was not specified to change by the rule.

5 Conclusion

By adding an order on the inscriptions, we introduced two rewriting formalisms for coloured
Petri nets, which are also able to (partially) change inscriptions. The first formalism is a straight-
forward extension of the classical DPO approach, while the second formalism tries to add an
SPO-like behaviour on the inscriptions, still providing the same behaviour on the net structure.
The latter approach has similarities with the so called Sesqui Pushout approach introduced in
[CHHK06], where the left leg of a rule is not applied by calculating the pushout complement,
but the final pullback complement. The main difference is that all incident edges are cloned in
SqPO, if a node is split by a rule. Further, there are rules, where our deletion-focused rewriting
will be ambiguous while SqPO is not applicable due to the fact that the final pullback comple-
ment is unique if it exists. Our approach is similar to [PEM87] while correcting a minor error
already mentioned in [HP02], coming from incorrect conditions for the existence of pushout
complements. In Section 3 and 4 we introduced a disjoint union of lattices compatible with
our formalisms and illustrated how the UIEditor uses this formalisms to realize adaptive user
interfaces. I this context the approach of [LO04] could be interesting, where the application of
transformation rule may depend on the current marking of the net.

Although out of the possibilities of this paper, it is not difficult to introduce typical extensions
of the DPO approach into our approach, for instance negative application conditions. Further-
more, its extension to other types of labelled graphs is quite straightforward.

Acknowledgements: We thank Barbara König for the helpful discussion on lattice theory and
its possible application in our setting.
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A Proofs

To show that pushouts and pushout complements exist in the category CPN [In,⊑], we use the
functor of Definition 7 and the fact that pushouts exist in CPN [In,=].

Lemma 1 For ⊑-morphisms b ∶ A→ B and c ∶ A→C the pushout exists in CPN [In,⊑] and is
unique up to isomorphism.

Proof. In the category of graphs and total graph morphisms the pushout always exists and is
unique up to isomorphism [Roz97]. Hence, pushouts exist in the category CPN [In,=].

Let D′ = (P′D,T
′

D,E
′
D,In,c

′
D, in

′
D) with morphisms d′1 ∶ F(B) → D′ and d′2 ∶ F(C) → D′ be the

pushout of F(b) and F(c) in CPN [In,=]. We construct the pushout of b and c in the category
CPN [In,⊑] as D = (P′D,T

′
D,E

′
D,In,c

′
D, inD) where

inD(x) =⊔({inB(x′) ∣ d′1(x′) = x}∪{inC(x′) ∣ d′2(x′) = x})

together with the morphisms d1 ∶ B → D and d2 ∶ C → D as d1(x) = d′1(x) and d2(x) = d′2(x)
respectively. Note that there cannot be an element without a preimage in B or C since then D′

would not be a pushout. Also all inB(x′), inC(x′) and inD(x) belong to the same partition of In
since their inscriptions are related by some common preimages in A, hence the supremum exists.
Thus, d1 and d2 are valid ⊑-morphisms, since d′1, d′2 are valid morphisms and by definition of the
supremum inB(x) ⊑ inD(d1(x)) as well as inC(x) ⊑ inD(d2(x)) for every x. The functor F just
changes inscriptions and d′1 ○F(b) = d′2 ○F(c) holds, implying that d1 ○b = d2 ○c holds.

It remains to be shown that there exists a unique mediating morphism. Let d1 ∶ B→ D and
d2 ∶C → D be morphisms commuting with b, c. Since this commutativity is preserved by F ,
there is a unique morphism h′ ∶ F(D) → F(D) with h′ ○F(di) = F(di) for i ∈ {1,2} (note that by
construction F(D) =D′). Hence, we can define a unique ⊑-morphism h ∶D→D with h(x) = h′(x)
such that h ○ di = di for i ∈ {1,2}. Because of this commutativity, for every x ∈ D and every
preimages x1 ∈ B, x2 ∈C of x it holds that di(xi) = h(x) for i ∈ {1,2}. Thus, inB(x1) ⊑ inD(h(x))
and inC(x2) ⊑ inD(h(x)) hold. By construction inD(x) is the smallest lattice element larger than
inB(x1) and inC(x2) for all x1, x2. Hence inD(x) ⊑ inD(h(x)) and h is a valid ⊑-morphism.

Lemma 2 For morphisms b ∶ A → B and d ∶ B → D the pushout complement in the category
CPN [In,⊑] exists, if and only if the following conditions hold:

• for every x ∈ PB ∪ TB without a preimage in A, d(x) is only connected to edges with a
preimage in B (dangling edge condition),

• for every x,y ∈ PB ∪TB ∪EB, if d(x) = d(y) and x ≠ y, then x and y have preimages in A
(identification condition), and

• for every x ∈ PB ∪TB ∪EB without a preimage in A, inB(x) = inD(d(x)) holds (inscription
condition).

Proof. Let C′ = (P′C,T
′

C,E
′
C,In,c

′
C, in

′
C) together with morphisms c′1 ∶ F(A) →C′, c′2 ∶C′ → F(D)

be the pushout complement of F(b) and F(d). This pushout complement exists if the first two
conditions of Lemma 2 are satisfied and is unique up to isomorphism [Roz97]. We construct
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the pushout complement C of b and d as C = (P′C.T
′

C,E
′
C,In,c

′
C, inC). The morphisms c1 ∶ A→C

and c2 ∶C→D are thereby defined as ci(x) = c′i(x) for i ∈ {1,2}. The inscription function can be
defined as inC(x) = inD(c2(x)) for all x ∈C. Since inB(x) ⊑ inD(d(x)) for all x ∈ B, inD(d(x)) is
the supremum of all inscriptions of preimages of d(x). By construction the morphisms b, d and
c1, c2 commute and are valid ⊑-morphisms, therefore d, c2 is a pushout as shown in the proof of
Lemma 1. In general, every inscription function inC with

inD(x) =⊔({inB(x′) ∣ d(x′) = x}∪{inC(x′) ∣ c2(x′) = x})

yields a correct pushout complement. Since all involved inscriptions belong to the same lattice of
In, these suprema exist (even⊔∅). Note that at least one of the two sets used above is non-empty
and if some x ∈ D has no preimage in C, then it has exactly one preimage x′ ∈ B but none in A.
Because of the third condition of Lemma 2 we know that inB(x′) = inD(x), thus the equation is
satisfied for every x and the diagram is indeed a pushout.

If the first two conditions of Lemma 2 are not satisfied, there is no pushout complement in
CPN [In,=], since the diagram does not commute or there is no mediating morphism. These
problems are on the graph structure and therefore also occur in CPN [In,⊑]. Assume the first
two conditions are satisfied but the last is not. Then there is an x′ ∈ B such that d(x′) has no
preimage in C. Thus, there is a Net D′ which is the same as D except that inD′(d(x′)) = inB(x′).
The diagram still commutes, but there is no mediating morphism from D to D′ and D is no
pushout, regardless of C.

Proposition 1 Let ρ be a ⊑-rule where the left leg is injective and let m be a ⊑-match such that
ρ is preservation-applicable to some net N. The preservation-focused application of ρ to N via
m results in a unique net N′ (up to isomorphism) if the set of inscriptions of N is a disjoint union
of lattices and each lattice is join-infinite distributive.

Proof. Let ρ consist of l ∶ I → L, r ∶ I → R and let m ∶ L → N be the match. Furthermore, let
C be the set of all pushout complements of l and m. Since l is injective, the pushout com-
plement Ĉ = (PĈ,TĈ,EĈ,In,cĈ, inĈ) of F(l) and F(m) is unique (up to isomorphism) and for
every (C′,m′, l′) ∈ C there is a morphism c′ ∶ Ĉ → C′ such that for every two of such mor-
phisms l′ ○ c′ = l′′ ○ c′′ holds. With this we define the net C⊓ = (PĈ,TĈ,EĈ,In,cĈ, inC⊓), where
inC⊓(x) = ⊓(C′,m′,l′)∈C inC′(c′(x)). Obviously, every c′⊓ ∶ C⊓ → C′ shown below is a valid ⊑-
morphism, such that the whole diagram commutes.

L I

N C′ C⊓ C′′

Ĉ
l

m′
m′′

m
c′

c′′
l′

l′′
c′⊓ c′′⊓

We show that C⊓ is a pushout complement. First observe that for every two pushout complements
C′, C′′ and every x ∈ Ĉ, the preimages of c′(x) under m′ and c′′(x) under m′′ are the same, since
l′ and l′′ are injective and the diagram would not commute otherwise. So let px = ⊔{inL(l(y)) ∣
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m′(y) = c′(x)} and let qx = inN(l′(c′(x)). Note that px and qx are the same, regardless of the
pushout complement used. By construction every net C′ with the same graph structure as Ĉ is a
pushout complement if and only if px ⊔ inC′(c′(x)) = qx. Therefore, since qx = ⊓C qx = ⊓C(px ⊔
inC′(c′(x))) = px⊔⊓C inC′(c′(x)) for every x ∈ Ĉ, the property also holds for the inscriptions of
C⊓, i.e. C⊓ is a pushout complement. Because there cannot be any smaller pushout complement
and the infimum is unique, there is only one minimal pushout complement. Note that all the
suprema and infima used in this proof exist, since for every x all involved inscriptions belong to
the same lattice of In.

Proposition 2 Let ρ be a ⊑-rule where the left leg is injective and let m be a ⊑-match such that
ρ is deletion-applicable to some net N. The deletion-focused application of ρ to N via m results
in a unique net N′ (up to isomorphism) if the set of inscriptions of N is a disjoint union of lattices
and each lattice is meet-infinite distributive.

Proof. Since the rule is deletion-applicable, the pushout complement N′ in CPN [In,=] calcu-
lated in the first step of Definition 8 exists. Furthermore, because of injectivity, it is unique
(up to isomorphism) and for every x ∈ N′ the set Ix is non-empty. Using the distributivity, for
every x and every x′ with m′(x′) = x we obtain that: ⊔Ix ⊓ inL(l(x′)) = ⊔z∈Ix(z⊓ inL(l(x′))) =
⊔z∈Ix(inI(x′)) = inI(x′). Thus, ⊔Ix ∈ Ix for every x. By definition ⊔Ix is larger of equal to any
element of Ix and smaller or equal than any other larger element, therefore also⊔Ix ⊑ inN(l′(x))
holds. Since every Ix has a unique largest element, the rewritten net is also unique (up to iso-
morphism).

Lemma 3 (XMLN,Val,⊑) is a disjoint union of complete lattices, provided Val is.

Proof. We observe that two inscriptions belong to the same lattice within XMLN,Val, if and only
if the root IDs are equal, since inscriptions with different root IDs can never be in relation. Let
Ink be such a lattice for some ID k and let L ⊆ Ink. Note that solely the root ID determines the
lattice of an inscription, i.e. for some child v of an l ∈ L it is possible that v↓ ∉ Ink holds. In the
following we will show the existence of the supremum and infimum of L and its uniqueness (up
to isomorphism). The supremum (or infimum) of the empty set is a single node without children
and with the smallest (or largest) value of Ink. We use ⊎ to emphasize when a union is disjoint.

Supremum. For every ID n ∈N, we define C⊔
n (L) = {v↓ ∣ (V,E,r,γ) ∈L,(r,v) ∈E,γ(v) = (n,w)},

the set of all direct subinscriptions of inscriptions of L, where the root ID is n. Furthermore, let
M = {n ∈N ∣C⊔

n (L) ≠∅} be the set of all IDs for which child nodes exist and let (Vm,Em,rm,γm) =
⊔C⊔

m(L) be their supremum for each m ∈M. The supremum of L can be expressed as follows:

⊔L = ({x}⊎ ⊎
m∈M

Vm,{(x,v) ∣ v ∈ {rm ∣ m ∈M}}⊎ ⊎
m∈M

Em,x,γ ′),

where γ
′(y) = γm(y) for y ∈Vm and γ

′(x) = (k,
l∈L wl) with l = (Vl,El,rl,γl) and γl(rl) = (k,wl).
Note that this definition can be reduced to ⊔L = ({x},∅,x,γ ′) with γ

′(x) = (k,
l∈L wl) if none of
the inscriptions of L contain subinscriptions. Since C⊔

n (L) decreases the height of all inscriptions
of L by at least one, ⊔L is a finite tree if and only if each element of L is a finite tree.

We now show by induction over the height of the inscriptions, that⊔L is in fact the supremum
of L. Let ⊔L = (V ′,E ′,r′,γ ′) with γ

′(r′) = (n′,w′). If the height of each inscription of L is h = 0,
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then V ′ = {r′}, E ′ =∅ and w′ =
l∈L wl (where wl is the value of l). For every i = ({ri},∅,ri,γi) ∈L
with γi(ri) = (ni,wi), by assumption ni = n′ and we know that wi t
l∈L wl =w′. Furthermore, the
supremum on the values exist, since the values belong to the same lattice, if the IDs are equal.
Hence, ⊔L is an upper bound of L.

Assume there is another upper bound b = (Vb,Eb,rb,γb) ∈ L with γb(rb) = (nb,wb) and b ⊑⊔L.
Because of b ⊑ ⊔L we know that ∣Vb∣ = 1, Eb = ∅ and nb = n′. Using the properties of upper
bounds, we obtain 
l∈L wl twb tw′ = 
l∈L wl , thus wb =w′ and b is isomorphic to ⊔L.

Now assume h > 0 for at least one l ∈ L and let i = (Vi,Ei,ri,γi) ∈ L with γi(ri) = (ni,wi). We
will show that i ⊑ ⊔L. By assumption, ni = n′ and as in the case h = 0 the suprema w′ exists and
wi t w′. By construction for every v ∈Vi with (ri,v) ∈ Ei, v↓ ∈C⊔

n (L) holds for some n. Hence,
C⊔

n (L) ≠ ∅ and there is an v′ ∈V ′ with (r′,v′) ∈ E ′ and ID n. By induction hypothesis v↓ ⊑ v′↓
since v′↓ = ⊔C⊔

n (L) and every element of C⊔
n (L) has at most height h−1 for every n ∈N. Hence,

⊔L is an upper bound of L.
Finally assume there is another upper bound b = (Vb,Eb,rb,γb) ∈ L with γb(rb) = (nb,wb) and

b⊑⊔L. As already shown for h= 0 this implies nb = n′ and wb =w′. Additionally by Definition 10
for every v ∈Vb with (rb,v) ∈ Eb there is a v′ ∈V ′ with (r′,v′) ∈ E ′. Since v↓ and v′↓ have both at
most height h−1, by induction hypothesis v↓ is isomorphic to v′↓. Now Assume there is a v′′ ∈V ′

where there is no v ∈Vb with v↓ ⊑ v′′↓. By construction this means that there is an n ∈N such that
C⊔

n (L) is non-empty. Thus, there is an i ∈ L with ID n and since b is an upper bound, there has
to be an i′ ∈Vb with i↓ ⊑ i′↓, violating the assumption. Hence we obtain Vb =V ′ and also Eb = E ′

because adding an edge to a tree without adding a node, results in an non-tree.
Infimum. Analogously to the supremum we show that the infimum of a set L ⊆ Ink exists, given

the same restrictions. For Every ID n ∈ N, we define C⊓
n (L) =C⊔

n (L) if for all (Vl,El,rl,γl) ∈ L
there is a vl ∈Vl with γl(vl) = (n,wvl) and (rl,vl) ∈ El . Otherwise C⊓

n (L) = ∅, such that C⊓
n (L)

contains all direct subinscriptions of elements of L where the root ID is n, but only if all elements
of L have subinscriptions with ID n. We define M = {n ∈ N ∣C⊓

n (L) ≠ ∅} to be the set of all IDs
for which every inscription has a child node and let (Vm,Em,rm,γm) = ⊓C⊓

m(L) be their infimum
for each m ∈M. The infimum of L can then be defined as:

⊓L = ({x}⊎ ⊎
m∈M

Vm,{(x,v) ∣ v ∈ {rm ∣ m ∈M}}⊎ ⊎
m∈M

Em,x,γ ′),

where γ
′(y) = γm(y) for y ∈Vm and γ

′(x) = (k,�l∈L wl) with l = (Vl,El,rl,γl) and γl(rl) = (k,wl).
By the same argument as before, the infimum on the values exists and ⊓L is a finite tree.

Let ⊓L = (V ′,E ′,r′,γ ′) with γ
′(r′) = (n′,w′). If all inscriptions have the height h = 0, this case

is completely analogous to the same case for the supremum. So let h > 0 for at least one l ∈ L and
i = (Vi,Ei,ri,γi) ∈ L with γi(ri) = (ni,wi). We will show that i ⊒ ⊓L. By assumption, ni = n′ and
as in the case h = 0, the infimum w′ exists and w′ t w. For every v′′ ∈V ′ with γ

′(v′′) = (n′′,w′′)
and (r′,v′′) ∈ E ′, by construction every i contains a v ∈ V with the ID n′′ such that (r,v) ∈ E.
Since both v′′↓ and v↓ have at most height h−1 and v′′↓ = ⊓C⊓

n′′(L), v′′↓ ⊑ v↓ holds by induction
hypothesis and ⊓L is a lower bound of L.

Finally assume there is another lower bound b = (Vb,Eb,rb,γb) ∈ L with γb(rb) = (nb,wb) and
b ⊒ ⊓L. As already shown for h = 0, this implies nb = n′ and wb = w′. By definition, for every
v′′ ∈ V ′ with (r′,v′′) ∈ E ′ there is a vb ∈ Vb with the same ID and (rb,vb) ∈ Eb such that v′′↓ ⊑
vb↓. Since v′′↓ and vb↓ have both at most height h−1, by induction hypothesis v′′↓ and vb↓ are
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isomorphic. Now assume there is an v′b ∈ Vb with γb(v′b) = (n′b,w
′
b) and (rb,v′b) ∈ Eb such that

there is no v′′′ ∈ V ′ with (r′,v′′′) ∈ E ′ and the same ID n′b. Since b ⊑ l for every l ∈ L, every l
contains an vl ∈Vl with ID n′b and (rl,vl) ∈ El . This means that the set C⊓

n′b
(L) is non-empty and

there is a v′′′ violating the assumption. Hence, V ′ = Vb and E ′ = Eb hold, thus, b and ⊓L are
isomorphic.

Lemma 4 Every lattice of (XMLN,Val,⊑) is meet-infinite (or join-infinite) distributive, if every
lattice of Val is meet-infinite (or join-infinite) distributive.

Proof. We show this by induction over the height of the inscriptions. Let m = (Vm,Em,rm,γm) ∈
Ink with γm(rm) = (k,wm) and let L ⊆ Ink, where Ink is the lattice of XMLN,Val, with IDs k. Note
that the distributivity holds trivially if L = ∅ since m⊓⊔∅ = �k = ⊔l∈∅(m⊓ l) and m⊔⊓∅ = ⊺k =
⊓l∈∅(m⊔ l) (�k and ⊺k are the smallest and largest element of Ink), so let L ≠ ∅.

Let h = 0 be the height of all inscriptions of L. Then⊔L = ({r},∅,r,γ) with γ(r) = (k,
l∈L wl).
Using the fact that Val is meet-infinite distributive, we obtain the following equality:

m⊓⊔L =m⊓({r},∅,r,γ) γ(r) = (k,�
l∈L

wl)

= ({r′},∅,r′,γ ′) γ
′(r′) = (k,wm.�

l∈L
wl)

= ({r′},∅,r′,γ ′) γ
′(r′) = (k,�

l∈L
(wm.wl))

=⊔
l∈L

({r′′},∅,r′′,γ ′′) =⊔
l∈L

(m⊓ l) γ
′′(r′′) = (k,wm.wl)

Note that the root element of the infimum of two inscriptions contains a child node with ID n, if
and only if both inscriptions contain a child node with ID n. By the same argument it is easy to
see, that almost the same equations hold if the height of m is zero. In fact, the only difference is
in the first line, where m⊓⊔L = ({rm},∅,rm,γm)⊓⊔L = . . ..

Now assume h > 0 for m and at least one l ∈ L. Furthermore, let m⊓⊔L = (V ′,E ′,r′,γ ′) and
⊔l∈L(m⊓ l) = (V ′′,E ′′,r′′,γ ′′) which exist, since all root IDs are equal. By the same argument
as in case h = 0 we know that γ

′(r′) = γ
′′(r′′). Since the results of ⊓C⊓

n (L) as well as ⊔C⊔
n (L)

are merged disjointly for each n, we can prove V ′ = V ′′, E ′ = E ′′ and γ
′ = γ

′′ by showing the
equalities for each n separately. In the following we will use the fact that for every singleton X ,
C⊔

n (X) =C⊓
n (X) holds and both sets are singletons. For simplification we write C⊔

n (X)⊔ p for
singletons X , if we mean x⊔ p for x ∈C⊔

n (X). We distinguish two different cases.
Case 1. Assume there is no vm ∈ Vm with (rm,vm) ∈ Em and ID n or there is no vl ∈ Vl with

(rl,vl) ∈ El and ID n for all l ∈ L. Then C⊓
n ({m,⊔L}) is empty as well as C⊓

n ({m, l}) for all l ∈ L.
Thus, neither m⊓⊔L nor ⊔l∈L(m⊓ l) contains a child of the root with ID n.

Case 2. Assume there is vm ∈Vm with (rm,vm) ∈Em and ID n and there is vl ∈Vl with (rl,vl) ∈El
and ID n for some l ∈ L. Then the sets C⊔

n (L), C⊔
n ({m}) =C⊓

n ({m}) are non-empty and contain
only inscriptions of height at most h−1. By construction there is an v′ ∈V ′ with (r′,v′) ∈ E ′ and
ID n which was generated by v′↓ =C⊔

n ({m})⊓⊔C⊔
n (L). Furthermore, there is a v′′ ∈ V ′′ with

(r′′,v′′) ∈ E ′′ and ID n which was generated by v′′↓ = ⊔x∈C⊔n (L)(C⊔
n ({m})⊓ x). By applying the

induction hypothesis, we obtain that v′↓ and v′′↓ are isomorphic.
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Since for every n one of the above cases holds, the subsets of V ′ and V ′′ generated for n are
equal and r′ = r′′, thus V ′ =V ′′. The same holds for E ′ and E ′′ implying m⊓⊔L = ⊔l∈L(m⊓ l).

We show (also by induction) that (XMLN,Val,⊑) is join-infinite distributive. The case h = 0
is completely analogous to the meet-finite case with the exception of using that Valk is join-
infinite distributive. Therefore let h > 0 and m⊔⊓L = (V ′,E ′,r′,γ ′) as well as ⊓l∈L(m⊔ l) =
(V ′′,E ′′,r′′,γ ′′). We make a similar case distinction.

Case 1. Assume there is no vm ∈Vm with (rm,vm) ∈ Em and ID n and there is no vl ∈Vl with
(rl,vl) ∈ El and ID n for at least one l ∈ L. Then C⊔

n ({m,⊓L}) is empty as well as C⊔
n ({m, l}) for

at least one l ∈ L. Thus, neither m⊔⊓L nor ⊓l∈L(m⊔ l) contains a child of the root with ID n.
Case 2a. Assume there is a vm ∈ Vm with (rm,vm) ∈ Em and ID n and and there is no vl ∈ Vl

with (rl,vl) ∈ El and ID n for at least one l ∈ L. Then C⊓
n (L) is empty and by construction there

is a v′ ∈V ′ with (r′,v′) ∈ E ′ and ID n such that v′↓ is isomorphic to vm↓. Furthermore there is
a v′′ ∈V ′′ with (r′′,v′′) ∈ E ′′ and ID n. Since C⊔

n ({m, l}) =C⊔
n ({m}) for at least one l ∈ L and

C⊔
n ({m}) is smaller than any other supremum, we obtain that v′′↓ is isomorphic to vm↓.
Case 2b. Assume there is no vm ∈ Vm with (rm,vm) ∈ Em and ID n but there are vl ∈ Vl with

(rl,vl) ∈ El and ID n for all l ∈ L. Then C⊓
n ({m}) = ∅ and there is v′ ∈V ′ with (r′,v′) ∈ E ′ and

ID n with v′↓ = ⊓C⊓
n (L) which is non-empty. Additionally there is an v′′ ∈V ′′ with (r′′,v′′) ∈ E ′′

and ID n and v′′↓ =⊓l∈L (⊔(C⊓
n ({m})∪C⊓

n ({l}))) =⊓l∈LC⊓
n ({l}) which is the same as ⊓C⊓

n (L)
since every l has a child with ID n, thus v′↓ and v′′↓ are isomorphic.

Case 2c. Assume there is a vm ∈ Vm with (rm,vm) ∈ Em and ID n and there are vl ∈ Vl with
(rl,vl) ∈ El and ID n for all l ∈ L. Since all involved sets are not empty, by construction there
are v′ ∈ V ′ with (r′,v′) ∈ E ′ and ID n and v′′ ∈ V ′′ with (r′′,v′′) ∈ E ′′ and ID n such that v′↓ =
C⊓

n ({m})⊔C⊓
n (L) and v′′↓ = ⊓l∈L(C⊓

n ({m})⊔C⊓
n ({l})). Since every set C⊓

n ({l}) is a singleton
(and non-empty), we can write v′′↓ as v′′↓ = ⊓x∈C⊓n (L)(C⊓

n ({m})⊔x), which is isomorphic to v′↓
by induction hypothesis.

Since for every n one of the above cases holds, the subsets of V ′ and V ′′ generated for n are
equal and r′ = r′′, thus V ′ =V ′′. The same holds for E ′ and E ′′ implying m⊔⊓L=⊓l∈L(m⊔l).
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