
1

ABTEILUNG FÜR INFORMATIK UND

ANGEWANDTE KOGNITIONSWISSENSCHAFT

FAKULTÄT FÜR INGENIEURWISSENSCHAFTEN

Technischer Bericht Nr. 2009-02

Context Modelling for Adaptive Collaboration

Jörg Haake, Tim Hussein, Björn Joop,

Stephan Lukosch, Dirk Veiel, Jürgen Ziegler

 26.06.2009

 ISSN 1863-8554

2

IMPRESSUM:

Technische Berichte der Abteilung für Informatik und Angewandte
Kognitionswissenschaft, Universität Duisburg-Essen

ISSN 1863-8554

Herausgeber:

Abteilung für Informatik und Angewandte Kognitionswissenschaft
Fakultät für Ingenieurwissenschaften
Universität Duisburg-Essen
Campus Duisburg
47048 Duisburg

http://duepublico.uni-duisburg-essen.de/informatik/berichte.xml

3

CONTEXT MODELING FOR ADAPTIVE COLLABORATION

Jörg Haake1, Tim Hussein2, Björn Joop2, Stephan Lukosch3, Dirk Veiel1, Jürgen Ziegler2
1Department of Mathematics and Computer Science, Cooperative Systemsa,

FernUniversität Hagen, 58084 Hagen, Germany
{joerg.haake,dirk.veiel}@fernuni-hagen.de

2Department of Computer Science and Applied Cognitive Science, Interactive Systemsa,
University of Duisburg-Essen, Lotharstr. 65, 47057 Duisburg, Germany

{tim.hussein,bjoern.joop,juergen.ziegler}@uni-due.de

3Faculty of Technology, Policy and Managementa,
Delft University of Technology, PO box 5015, 2600 GA Delft, The Netherlands

s.g.lukosch@tudelft.nl

Collaborative work is characterized by frequently changing situations and corresponding demands
for tool support and interaction behavior provided by the collaboration environment. Current ap-
proaches to address these changing demands include manual tailoring by end-users and automatic
adaptation of single user tools or for individual users. Few systems use context as a basis for adapt-
ing collaborative work environments, mostly focusing on document recommendation and awareness
provision. In this paper we present, firstly, a generic four layer framework for modeling context in a
collaboration environment, secondly, a generic adaptation process translating user activity into state,
deriving context for a given focus, and executing adaptation rules on this context, thirdly, a collabo-
ration domain model for describing collaboration environments and collaborative situations, and,
fourthly, examples of exploiting our approach to support context-based adaptation in four typical
collaboration situations: co-location, co-access, co-recommendation, and co-dependency.

Keywords: context modeling; context awareness; adaptation; collaboration; CSCW

1. Introduction

Work in modern organizations is to a large extent collaborative. This is particularly true
for knowledge work which is increasingly performed by distributed teams cooperating
across large, often global distances. While collaboration has become ubiquitous, it also
poses a number of challenges that need to be addressed for supporting it effectively by
information and communication technology, or, more specifically, by cooperation sup-
port systems. These challenges arise from a variety of features that are characteristic for
collaboration. Among other aspects, collaborative tasks are often ill-structured at the out-
set, emerge in the course of the collaborative process, and need to respond flexibly to
changing goals or situations. Users participating in a collaborative project may find them-
selves in different physical environments or settings and may use a variety of different
devices. Also, users are often involved in more than one project at a time, raising the

a The authors are in alphabetical order.

4

need for frequent task or tool switches and for rapid cognitive adjustments to the subject
at hand.

Collaboration environments typically provide a range of features supporting the basic
requirements of communication, coordination, collaboration (cf. Ref. 5) and various
mechanisms for information provision and access38:
• An example for communication support is the provision of communication channels

among co-workers on a shared document, like e.g. audio or video conferencing tools
or text-based messaging systems.

• Examples for coordination support range from workflow mechanisms supporting the
definition and execution of workplans to more informal approaches like the provi-
sion of awareness mechanisms for distributed teams collaborating in synchronous
meetings, the provision of notifications about changes performed by team members
during asynchronous collaboration in a shared document repository, or the provision
of telepointers during synchronous joint editing of a document. Other means for faci-
litation affect the interaction among team members, e.g., paragraph locking in a
shared editor prevents conflicting changes, or opening a simultaneous audio channel
allows authors to discuss and coordinate their concurrent changes to the shared doc-
ument (the latter being an example of using communication for coordination).

• Examples for collaboration support include the provision of shared editors or appli-
cation sharing functionality which enables the team members to either synchronously
or asynchronously work on a shared artifact in order to achieve a shared group goal.

• The provision of information pertaining to the subject of collaboration may concern
any type of documented information ranging from artifacts produced by the project
over relevant background knowledge, reference materials, web collections and oth-
ers. Systems supporting these needs include, for example, shared workspaces, docu-
ment management systems, wikis or shared bookmark collections. While many doc-
uments may be relevant for the team as a whole, projects typically comprise different
roles and skills with different responsibilities and information needs. Users should
therefore have efficient access to information relevant to their respective role in the
project. At the same time, they should be able to get and maintain an overview and
understanding of the growing pool of information used by the collaborators.

Collaboration support thus requires a wide range of communication facilities, tools

and information resources that must be used in ever-changing collaboration situations in
an effective and efficient manner. This often leads to a high level of complexity of the
collaboration environment, to cognitive overload on the part of the users, inefficient
interaction and, consequently, suboptimal use or outright rejection of sophisticated
collaboration support systems52. To alleviate these problems, the functionality and
interaction afforded by the collaboration environment should be adjusted to the changing
collaboration situations. For example, when team members edit shared documents at
different times (asynchronously) the environment could use notifications to facilitate
coordination within the team. However, if several authors are online and access the same
document, the environment should either switch to pessimistic concurrency control (e.g.
locking) to prevent conflicts, or provide awareness features (e.g. telepointers and
indications where coworkers are working) to help avoid conflicting edits. Similarly,

5

depending on the task and situation at hand, team members should be able to access
relevant information as directly as possible, using, for example, shortcuts or optimized
navigation paths. To date, when users and teams wish to adjust their environment to
different situations, they have to negotiate and perform such changes manually. This
leads to a high cognitive overhead, ignoring the potential for improvement, and
subsequent suboptimal team performance.

The approach proposed in this paper is to address this problem by making the
collaboration environment adaptive. Self-adaptation of systems to changing user needs
and situations has been investigated for a long time in various application domains, such
as intelligent tutoring systems, product recommendations in e-commerce, or location-
based services (for an overview, see Ref. 33, for example). In these developments, the
focus has mainly been on the individual, e.g. by implementing fixed or dynamically
changing user models. In collaborative work, adaptation needs to take account both of the
individual participant’s needs as well as of the group’s requirements. Adaptive activity
support for collaborative settings has as yet been little investigated (maybe with the
exception of adapting resources in physical meetings) and raises a number of new issues
beyond single-user adaptation such as combining individual user models into group
models, balancing the needs of different participants, and adapting a collaborative
environment for improving group interaction.

Adaptive collaboration environments must utilize both information about the
collaboration situation, and knowledge about adaptations suitable for the given situation.
We refer to the information about the collaboration situation as “context information”
while the second type of information will be called “adaptation knowledge”. The notion
of context is paramount for any kind of adaptive system. Context-aware and context-
adaptive systems have in recent years been a major research topic in fields such as
ubiquitous computing or mobile applications. Location-based services on mobile devices
are one prominent and frequently cited example of context-aware systems. In accordance
with the primary interests in ubiquitous computing research, context-awareness has often
been associated with variables in the external physical environment such as location,
proximity, time, or device used. This focus on physical context, however, seems to be too
limited for adapting user-system interaction in general and, specifically, interaction in
collaborative environments. A number of proposals have been made in recent years to
consider a more general and comprehensive interpretation of context18,32,51. These
proposals include also non-physical aspects such as the user’s interests, tasks, or
interaction behavior and may go as far as considering everything as potential context6.
These definitions notwithstanding, a generalized view of context and methods for its’
systematic use in adaptive interactive systems are still missing. This is even more
pronouncedly the case for collaborative applications where context cannot only been seen
from the perspective of the individual user but must be aggregated in a meaningful way
for the group as a whole.

In this paper, we present an attempt to formulate a notion of context that is applicable
for collaborative work. We elaborate a generalized model of context in conjunction with

6

a graph-based representation that is independent of the respective adaption mechanism.
We also introduce a method for managing dynamic context in an adaptive system and
present a system architecture suitable for adapting collaboration support. The model and
methods are illustrated by examples of applying our approach in several collaborative
situations. Finally, we present our conclusions and directions for future work.

2. Problem analysis and objectives

A basic methodological prerequisite for designing and implementing systems that are
capable of adapting themselves is to gain an understanding and to provide an appropriate
definition of the range of dynamic parameter changes that may cause a system to adapt.
A considerable number of categorizations or multi-dimensional descriptions of such con-
text-relevant parameters has been developed in related research (see e.g. Ref. 54). An
account of these approaches will be presented in the related work section of this paper.
The set of parameters actually considered for adaptation has typically been restricted to a
few specific entities, such as fixed categories of users in static user models or the spatial
coordinates of the user in location-based adaptation. Context-awareness of systems has
frequently been associated, as in the latter example, with parameters that are external to
the system under consideration. Depending on the definition of the system’s boundaries,
the external context may include or exclude aspects of the user. In ubiquitous computing
research, user models were typically not characterized as context. From an interactive
and collaborative systems perspective, it appears reasonable to consider the computation-
al state of the hardware/software system as well as the state of the interaction with the
user and among the users as internal context factors, and measurements taken from the
physical environment as external. The user’s ‘state of mind’, i.e., for example, goals,
prior knowledge or interests, may initially be external, but becomes internal when
represented in the system in some suitable form.

Since we are aiming at a generalized notion of context, we will consider both aspects
as context and will refer to external parameters as exogenous context factors and to
internal parameters as endogenous context factors. Whereas a number of approaches for
context adaptation only take single or a few unconnected factors into account, we
postulate that, in principle, any exogenous or endogenous parameter can become context.
Whether some entity is context or not, is thus merely a matter of the perspective taken.
This can be phrased in terms of focus versus context. Take the example of a typical
location-based service: When setting the focus on ‘restaurants and entertainment’, the
city the user is currently in becomes context. This may cause the system to show only
restaurants and entertainment events in that particular city. Conversely, if the user wants
to find all cities where a particular restaurant chain has locations, ‘cities’ may become a
focus with the specific restaurant chain as context. Whether an entity is in the focus or
constitutes context is determined by the current goals or activities of the actor or actors
who interprets the context (cf. Ref. 51). Making use of this flexible, dynamic focus
setting and the resulting relativity of context, however, leads to a strong interrelatedness
of endogenous and exogenous factors and to a high level of complexity.

7

While many studies have addressed context-aware systems for individual users, the
investigation of context for collaborating groups is as yet rather limited. The notion of
shared context has been analyzed to some extent, for instance, in Ref. 54. However, how
individually relevant context parameters can systematically be combined into a shared
context is still a largely open issue. Approaches such as determining the overlap
(intersection) between individual contexts or merging the different contexts (union) need
to be investigated for different situations and activities. Such fairly manifest approaches,
however, may be too limited and may need to be extended and complemented by more
sophisticated methods.

To be able to translate these conceptual deliberations into adaptive collaboration
support, we need a framework and methods for modeling context in an explicit,
systematic way that is suitable for supporting the design and implementation process.

We are therefore aiming at a context definition that
• is sufficiently general to capture a wide range of adaptation purposes, in particular

adapting both functionality and information content provided by the system in the
current situation,

• can be expressed by formal representations that can be used as the basis for imple-
menting or generating adaptive systems, and

• is capable of capturing the relevant context aspects specifically in collaborative
work.

To exploit context in a collaborative system the context framework needs to include

the following aspects:
• representing context in a formalized manner suitable for manipulation and interpreta-

tion in a collaborative adaptive system. Since developers may not foresee all adapta-
tion requirements the context model needs to be extensible.

• representing adaptation knowledge that specifies the concrete adaptations to be per-
formed in specific collaboration situation. Adaptations may address a range of dif-
ferent aspects such as tools, user interface and behavior, content, or even the context
model itself.

For implementing and performing adaptations the following requirements must be

met:
• the approach should facilitate and simplify the construction and implementation of

context adaptive systems by providing means to separate the different concerns into
manageable components,

• context model and application models must be consistent in terms of concepts and
relationships as well as in terms of the representations used, and

• the adaptation knowledge must be consistent with the adaptation interface offered by
the collaborative applications.

8

The approach proposed in this paper is to provide a generic, multi-layer context
modeling framework, separating the different concerns in representing and utilizing
context and providing a structure for the development process. This framework can be
populated by different concrete modeling methods. The method we describe here uses
ontological representations to model context by an extensible set of entities and
relationships. We describe a neuronally-inspired spreading activation approach as well as
rule-based techniques for contextualizing entities in this framework. We demonstrate the
feasibility of the approach through different collaboration scenarios that comprise typical
collaboration patterns.

3. Related Work

Context. The word "context" shows its meaning inherently: con (meaning: with) text.
This definition has its origin in linguistics expressing the surrounding situation for an
easier interpretation36,4 or to express a communicative goal7. In philosophy context is
either used as a correlation between sentences or defines aspects of a situation which help
understanding the semantic meaning of an expression9,29. Psychologists research context
with regard to how changes of the situation affect cognitive processes17,53.

In recent years, the notion of context has played an increasingly important role in
computer science, most notably in the area of ubiquitous computing with the aim of
developing context-aware systems45. In the view of ubiquitous computing context-aware
systems utilized contextual information such as time, location, users and available
resources to represent aspects of the physical world. Roth42 extends the set to include
sensors and object properties. An even more general definition was provided by Dey et
al.18,19 defining context as any information characterizing the situation of an entity.

According to Zimmermann54, any information used as context of an entity can be
classified into one of five categories: individuality (all information about an entity that
can be observed), activity (goals, tasks, actions), location, time and relations between
entities. But this definition does not consider dynamic collaborative situations occurring
in user groups or teams.

Another popular definition given by Winograd51 defines context as an operational
term for characterizing its role in communication. This means something is context
because it is used in communication for interpretation and not due to its inherent
properties. Edwards24 explores the space between two different views on context: while
the area of Computer Supported Cooperative Work (CSCW) considers people as
consumers of context information; the ubiquitous computing community primarily
considers systems as consumers of context information. Dourish23 describes two main
uses of context in ubiquitous computing: to either dynamically change the behavior of the
system or to enrich information with retrieval cues. Either way, user models are typically
not characterized as context.

Approaches to model context range from simple key-value models over graphical
models up to sophisticated ontology-based which support validation and reasoning (cf.

9

Ref. 47). Recently, the use of the Web Ontology Language (OWL)b has gained
importance (e.g. Ref. 10, 50). Other authors propose hierarchical context models: Chen
and Kotz12 distinguish directly sensed low-level context (time, location) from inferred
high-level (mood, intention).

Dey et al.18 call context information with a direct influence on the situation (like a
participating person) primary context and complementary information without direct
influence (like the person’s phone number) secondary context.

Context-aware Systems. The most prominent examples for context-based adaptation
focus on single users and consider location as the most relevant information45,1,8, focus on
learner profiles (e.g. the COLER-system15) or focus on adaptation of web content in
regard to user interests. CATWALK31 or SPREADR30 are examples for adaptation of
web content using OWL to model multiple domains which represent the context.
CoBrA10,11 is also using ontology-based context knowledge to adapt service agents
according to a user's context. The Kimura system35,48 is an example for supporting users
through awareness information inferred from the working context of a user. It focuses on
traditional office computing environments and uses peripheral displays to assist users in
managing multiple tasks.

The aCAPella system20 is a context aware system that can be “trained” by the user to
automatically recognize events depending on the current context. Context information is
obtained from microphones, cameras, RFID and other devices. aCAPella interprets the
information and thus is able to recognize the start of a meeting and to automatically
present documents that have been used in a similar context in the past. This approach
focuses on real-world interaction and does not support collaborative work via computers.

Adapting collaborative systems. Gross and Prinz26 introduce a context model and a
collaborative system supporting context-adaptive awareness. The context model consists
of events, artifacts, locations, etc. The main restriction of this approach is that the context
representation can only be used to update and visualize awareness information. Addition-
ally, only one cooperative application (BSCW) and no work environment with several
applications was examined. Ahn et al.2 introduce a knowledge context model used for
implementing a virtual workgroup support system. The drawback of their solution is that
their knowledge context model has to be extended for other application domains. The
Semantic Workspace Organizer39 is an extension of BSCW. It analyzes user activities
and textual documents inside the shared workspace and suggests appropriate locations for
new document uploads or for document searches.

Intermezzo24 tries to fill the gap between CSCW and ubiquitous communities use
contextual information through the creation of new higher-level services. Another
approach was presented by Rittenbruch41 to present context as awareness information -
but real world examples are missing. Fuchs25 describes a system called AREA which is
an integrated synchronous and asynchronous notification service for awareness
information. Again AREA uses the context representation only for awareness
information.

b http://www.w3c.org/2004/OWL

10

The ECOSPACE project aims at providing an integrated collaborative work
environment37,40. For that purpose, it uses a service-oriented architecture and provides a
series of collaboration services for orchestration and choreography. The orchestration and
choreography is based on an ontology which however has not yet been described37,49.

The project inContext21 focuses on enriching web services in mobile environments
used for collaborative work. Schall et al.44 introduces the Human-Provided Services
(HPS) framework which lets people manage their interactions and integrates their
capabilities into web-scale workflows as collaborative services. Dorn et al.22 analyses
team behavior and used collaboration services to improve adaptation of collaborative web
services. The dynamic environment of a team in regard to activities and users is used as
contextual information.

Summary. The above approaches focus on context representations and adaptations
with limited scope. They are either restricted to single-user systems, to specific domains
or to specific aspects of collaborative work, often focusing on awareness or knowledge
management. Context is not represented in a formal manner and most context models are
not extensible. Adaptation of general interaction capabilities based on group context and
for multiple users of a cooperative system is intended only by ECOSPACE, but the
required context model is still an open issue. Similarly, only ECOSPACE supports the
integration of different collaboration services within the same shared work environment.
In summary, current approaches do not sufficiently support a context-based adaption of
shared work environments.

4. A Generic Context Framework

In this section, we introduce a conceptual framework for context-adaptive applications
that aims at meeting the requirements postulated in chapter 2.

4.1. A Four Layer Framework for Context-based Adaptation

In contrast to monolithic context models, we propose a context model distinguishing
three distinct layers: knowledge layer, state layer, and contextualization layer. In addi-
tion, we add a fourth layer to our framework describing context-based adaptation. We see
contextualization as a selection process: In a complex situation, contextualization me-
chanisms are used to extract the most relevant elements. Consequently, we need the fol-
lowing components for a conceptual context model:

(a) Information about the current situation/state provided by sensing components
(mapping internal and external information sources into state objects).

(b) Background information about the (application) domain.
(c) Contextualization rules to constitute a contextualized state, and
(d) Adaptation rules that define a set of meaningful adaptations according to the

contextualized state.
In order to meet the requirement of a separation of concerns (see section 2), the

model is divided into distinct layers, including one layer for each the domain knowledge,

11

the current state, and contextualization as well as adaptation information. The separation
into distinct layers helps to ensure the interchangeability of the components:

Figure 1 A four-layered framework for context-based adaptation.

1. The knowledge layer forms the basis for the context framework. It contains all

relevant conceptual and factual knowledge about the application domain. It can
be seen as a user- and situation-independent, neutral and objective view of the
application domain, that includes all information about the system and
application domain that is not likely to be changed.

2. The state layer contains information about the current situation including
information about physical environment, computing environment, resources and
user model: Where is the user? What time is it? What are the current
circumstances? Considering the constitutional information defined in the
knowledge layer, a model representing the current state of usage is being
defined. Sensing rules express how both external and internal information
sources can be used to take information from outside the application into
account as well as information derived from system behavior (User A clicked on
Item B). Thereby new objects or properties can be established under the terms
defined in the domain model.

12

3. In the contextualization layer, contextualization rules define which subset of the
state is relevant for a given focus. A focus can be an arbitrary subset of the state,
which represents the adaptive system’s current center of attention. This involves
an interpretation of the state. What is important under which circumstances? An
agenda for instance may generally be important in case of a business meeting.
The result of this interpretation is a contextualized state holding all information
relevant in a certain focus. We refer to this contextualized state as the context of
the given focus. Contextualization can thus be seen as a filtering process to
extract the most important elements from the current state.

4. Upon this, adaptations defined in the adaptation layer are selected. From a set of
adaptation rules, the relevant rules are identified using the contextualized state.
Such adaptation rules could be for instance “If communication is needed for
collaboration and all participants have a preferred communication channel in
common, then open that channel for each participant in a session.” Applying
the relevant rules leads to an adapted state, which needs to be reflected in the
collaborative applications’ presentation and behavior.

As an addition, evolutionary components could be integrated in this architecture on
all of the four layers, but this is out of the scope of this paper.

4.1.1. Knowledge layer

The knowledge layer provides the foundations by representing both the application do-
main model as well as different context aspects such as physical environment, computing
environment, resources and user model in a unified way. For this purpose, classes of in-
dividuals and relations of predefined relation types are used. We use instances of these
types – which we denote as individuals – to express stable predefined knowledge such as
“Duisburg is a city”. We call information regarding concrete individuals concrete know-
ledge in contrast to abstract knowledge concerning classes and their relations. Both con-
crete and abstract predefined knowledge is stored in this layer as well as inference rules
regarding this knowledge. This information constitutes the domain model, which can be
represented by different techniques, for example, by using the constructs of the Web On-
tology Language (OWL).

Figure 2 All relevant application and/or domain knowledge is stored in a domain model.

13

The following list briefly describes the most important concepts of OWL:

• Classes: Similar to common programming languages, classes represent categories or

types of objects.
• Individuals: An instantiation of a class is called an individual. In object-oriented

programming languages this would be called an object.
• Literals: Literals are simple values like strings or integer numbers.
• Object properties: A relation between two individuals is called object property (or

object relation).
• Datatype properties: A relation that links an individual to a literal is called datatype

property (or datatype relation).

Classes, individuals and literals can be represented by nodes while edges stand for

object properties, datatype properties, or subclass relations. Figure 3 illustrates an
example of concepts, permanent individuals and their properties.

Figure 3 Sample domain model including classes, individuals, literals and properties.

Axiomatic knowledge can be represented in OWL as well: For each property type,
domain and range of the property can be declared together with cardinality constraints,
etc. A property type works_together_with could for instance be defined as a symmetric
one, ranging from the set of Persons into the same set with an unbound cardinality.

Certainly, modeling the relevant information of the domain is a laborious task, but as
depicted in section 2, a formalized representation of contextual information is a major

14

benefit in order to exploit context. Once created, a semantic model of the application
domain can be utilized for various application and adaptation aspects, as we will show
later on.

4.1.2. State Layer

Whereas the knowledge layer contains situation-independent information, the state layer
represents the current state. Besides static individuals and properties, included in the
knowledge layer, the state layer includes dynamically changing individuals and proper-
ties describing the current situation (state). However, these objects must conform to the
pre-defined classes, axioms and property types of the knowledge layer. Sensing rules take
information coming from endogenous and exogenous information sources (see section
4.2) and concrete knowledge from the domain model into account and reflect them in
state individuals’ and properties. Thereby sensing rules help to map and filter endogenous
and exogenous observations of the environment (both external and system internal) into
the state model. Abstract knowledge (A person is in a room) can be inferred from con-
crete state information (Paul is in room LF283) by applying inference rules from the do-
main model.

As a result, the application state holds a raw (in the sense of uninterpreted) model of
the current state of the collaborative environment. To be more precise, we can express
this state in a graph theoretical way introducing the term state graph:

Definition: State Graph

GS := {V, E, σ}

The state graph GS represents all individuals, classes (both represented by vertices v ∈ V)
and properties (represented by edges e ∈ E) characterizing the current state. The property
strength function σ expresses the “degree of truth” (a term originally from the field of
Fuzzy Logic) and indicates the fulfillment of the property for each point of time in T. An
uncertainty function for instance could be defined analogously if needed.

Definition: Relation strength function

σ : E × T → [0,1]

GS represents the current state and can be precisely represented by an RDF graph.

15

Figure 4 A state consisting of individuals (solid), classes (dashed) and properties (lines). The input comes from
both sensors and domain model via inference (i.e. is a Person).

RDF assertions can be used to describe such a state graph in a machine readable way. In
RDF, the relations are described in subject-predicate-object sentences.

Due to the separation of the layers, the constructed state model can be utilized for
various purposes. For instance it can be used for contextualizing items as well as for
analysis and learning processes.

4.1.3. Contextualization Layer

The contextualization layer provides techniques that define, which subset of the state is
relevant for a given focus. Accordingly, we call those techniques contextualization tech-
niques (e.g. rule-based). A focus is a non-empty set of objects from the state model (i.e.
an arbitrary subset of the state) representing the current center of attention within the
adaptive system. It is set by the application environment, e.g., by the user or by an appli-
cation, and is used as the starting point for applying contextualization techniques. Con-
textualization techniques select those parts of the overall state that are contextually rele-
vant for the current focus and then (optionally) apply some form of interpretation of that
context e.g. by filtering or weighting the objects in the contextualized state or by infer-
ring additional knowledge.

16

Figure 5 Step 1-4 illustrate the computation of the contextualized state as a filtering process. In an optional step,
the contextualized state could then be interpreted leading to e.g. a weighted graph.

Next, we demonstrate this concept by giving several simple examples using IF-THEN
rules as a contextualization technique (later on, we illustrate the contextualization process
using alternative techniques). The IF-THEN-rules listed below indicate the importance of
a class or individual under certain circumstances (“What is important under which
circumstances?”).

In case of a business meeting, an agenda is generally important. In a SPARQL-like
notation this could be stated as:

Example rule 1: IF (?person participates_in ?business_meeting) AND (?agenda
is_agenda_for ?business_meeting) THEN ?agenda

If two persons work on the same paper and have the same preferred communication
channel, then this communication channel is important. We focus on the person and the
business meeting and build the appropriate contextualized state by selecting objects (the
agenda) contextually relevant to the focus objects.

Example rule 2: IF (?Person_1 works_on ?Project_Y) AND (?Person_2 works_on
?Project_Y) AND (?Person_1 has_pref_com_channel ?Com_c) AND (?Person_2
has_pref_com_channel ?Com_c) THEN ?Com_c

Here, the focus lies on people working on the same project. Applying this contextualiza-
tion rule, we infer that they share a preferred communication channel, which is added to
the contextualized state as well (because this seems to be an object of relevance in this
certain context). Next, we give an example for a contextualization rule on a group basis:

Example rule 3: If (BSCW_Team ?predicate ?object) THEN BSCW_Resources

Under any circumstances, BSCW resources are important for the BSCW team.
Translating this into the focus/context nomenclature, it means that we are looking at
BSCW resources in any context as long as the BSCW team (focus) is involved.
Consequently, BSCW resources will be added to the contextualized state any time, the
BSCW team is involved.

17

A contextualized state can be seen as a filtered state. The result is a contextualized
graph for each focus (e.g., user, group, artifact, or any combination of state objects),
whereupon adaptations can be selected. Like the state layer below, separation of concerns
and the use of a formal semantic representation like RDF make the contextualized state
highly utilizable and interchangeable between applications.

Incorporating the relation strength values inside the state is optional and depends on
the contextualization technique. In section 6.3, we describe a contextualization process
using a Spreading Activation approach that uses the focus as a starting point for an
activation flow resulting in a weighted network representing the corresponding context.
Opposite to the IF-THEN rules Spreading Activation would incorporate the relation
strength function. Alternatively, traditional recommendation algorithms like
Collaborative Filtering could be used. Those techniques are triggered by a certain input
(this would be the focus) and thereupon compute the most important individuals or
classes by building a context around this input.

4.1.4. Adaptation Layer

While the contextualized state contains information about individuals relevant for the
current focus, the adaptation layer contains adaptation rules, which describe which adap-
tation actions to perform in which case. Adaptation rules usually include operations for
changing properties of the collaborative environment, of artifacts, or in general any state
variable (“show”, “start application”, etc.). The effects of these adaptations have to be
propagated to the user interface. We propose to represent adaptations rules as IF-THEN-
rules. An example for such a rule may be: IF ?document is important THEN show ?doc-
ument. Detailed examples for adaptations are presented in section 6.

4.2. Utilizing the framework for adaptation

Having defined and described the layers of our proposed context framework, we are now
going to illustrate how the models and rules can be used in an adaptation process. Use-
cases for validation of the framework and a prototype system based on it will be pre-
sented in sections 6 and 7.

An adaptation cycle usually consists of the following phases: User action – sensing –
selecting adaptations – performing adaptations. Subsequently, we are going to show that
the separation of models and rules proposed in the framework matches well the phases of
such an adaptation cycle. Figure 6 shows a sample adaptation process based on the
framework.

18

Figure 6 Adaptation process

4.2.1. Sensing

Sensor components monitor the users’ behavior, ideally in an unobtrusive way. These
observations may include events or conditions in the computing environment and from
the outside world as well, including sophisticated methods that sense rather abstract in-
formation like “Two persons, who are working on the same project, are in the room at
the same time” via sensing rules. A sensing engine processes this information and the-
reupon creates or modifies the state model.

4.2.2. Contextualization

Now the contextualization engine applies the relevant contextualization rules mapping
the current collaboration state to a contextualized state. Such an engine could, for in-
stance, be simply rule based or use sophisticated techniques like Spreading Activation for
deriving the current context state. In section 4.1.3, contextualization rules are defined;
section 6.3 provides an example for Spreading Activation. There are no constraints re-
garding the contextualization technique used as long as it provides means for selecting
the most relevant elements.

4.2.3. Adaptation

At this point, the most important individuals and classes are identified as contextualized
state and can be used as a foundation to perform adaptations. If a certain communication
channel is important, the system can establish it for all participants. In the same way,

19

important documents can be presented. Hardware adaptations are also possible, like turn-
ing on an LCD projector or switching of the light. During this process, certain adaptation
rules are triggered (depending on the contextualized state), an execution sequence is
created and processed in the adaptation engine. This leads to updates of the collaboration
environment as well as of the state model. Adaptation processes are illustrated in detail in
section 6.

4.3. Summary

In section 2, we identified several major requirements for a generic context framework.
Our approach helps to address these requirements through the following aspects.

Our definition of context is consistent with commonly cited definitions by Schilit &
Theimer, Dey and others. Context is constituted by the entities that characterize the
situation. By using contextualization rules, we identify just those entities and optionally
use techniques such as Spreading Activation to refine the results. We interpret
contextualization as an intelligent filtering process that distinguishes important
information from unimportant. The preprocessing performed in the contextualization
layer may help to reduce the complexity of the adaptation rules by simplifying the
conditions to be checked. The layering and the specification of different components
facilitate the flexible substitution of components in our architecture. Separating the
aspects of sensing, contextualization, and adaptation allows substituting or combining the
components implementing these aspects. For instance, it is possible to use different
adaptation engines within a collaborative system on the same contextualized state.

The use of established semantic languages like RDF, OWL and SPARQL throughout
the framework additionally supports interchangeability of components and “trading” of
context models between applications. The approach is based on a unified formal graph
model for context using different representations such as RDF, OWL or SPARQL. These
representations can be interpreted and manipulated in a computer system. The adaptation
rules contained in the adaptation layer facilitate the description of adaptation knowledge
including the effects of adaptations. Our approach supports consistency between context
model and application model due to the integrated knowledge layer representation.

In sections 5 and 6, we give examples of the framework’s universality and
extensibility by sketching a sample domain model for collaborative workspaces and by
applying the framework to the adaptation in typical collaborative situations. Further on,
we propose a system architecture for this framework in section 7 to demonstrate its
general technical practicability.

5. A Sample Domain Model for Collaborative Workspaces

The previous section introduced our generic context framework which is based on four
layers: knowledge, state, contextualization and adaptation. The knowledge layer forms
the basis for the context framework as it contains all relevant conceptual and factual
knowledge about the application domain. Since this paper deals with context modeling
for adaptive collaboration, the knowledge layer needs to describe knowledge about the

20

collaboration domain, the application domain (i.e. the task that should be collaboratively
solved) as well as external context factors. In this section, we focus on the collaboration
domain by analyzing properties of collaboration and its support in collaborative work-
spaces. This domain model addresses scenarios in which several actors collaborate to
achieve a shared goal. Such collaboration is technologically supported by a wide range of
communication facilities, tools and information resources. The collaboration process and
result are documented in shared artifacts which are accessed by tools and thereby the
collaborating actors.

The following model intends to capture the basic concepts of collaborative
workspaces. It focuses on the technological support for collaborative interaction and does
not distinguish different artifact types or task domains. If applied in a certain
collaboration environment (e.g., BSCW, SharePoint), it must be extended with concepts
matching its specific properties. Thus, the domain model is intended to be completely
open for extensions that cover aspects not included in the following example scenario of
two knowledge workers collaborating at a distance. Such extensions could stem from
scenarios focusing on co-located collaboration, workflow management, collaborative
recommendation or social networking. We address some of these topics in Section 6
where we extend the domain model presented in this section accordingly.

As discussed in Section 2, the collaboration and task domains are interdependent:
knowledge about collaborative work (e.g., shared work environments and their
components, roles of users, tasks) refers to concepts from the application domain (e.g.,
types of artifacts). Specific tasks or objects from the application domain may be worked
on best by using specific types of collaboration support (e.g., types of sessions, tools, or
coordination mechanisms).

5.1. Global collaboration space

To derive a domain model for collaboration, we start by analyzing and decomposing the
basic concepts and interactions in a global collaboration space. A global collaboration
space (cf. Figure 7) contains all actors, user workspaces, applications, services and arti-
facts needed to carry out a project between the involved actors. In our sample environ-
ment Actor:a_alice and Actor:a_bob are members of a team represented as
Team:productDesign (cf. Figure 7) that uses several applications to design and describe a
new product. The class Role defines a set of possible actions that actors can execute with-
in an application. Each application defines a set of supported actions. A subset or the
whole set of these possible actions is assigned to a role. Thereby, different roles with
different access rights can be defined. Each actor can have multiple roles. The role of a
user for an application is assigned by the user's workspace and needs to be explicitly
modeled for each type of application.

21

Figure 7 Basic interactions within a sample global collaboration space

As Figure 7 shows, Actor:a_alice has the role Role:designer_alice while using
Application:imageEditor_alice and the role Role:editor_alice while using
Application:textEditor_alice. We distinguish between these two roles to illustrate that
each role usually implies different activities and uses domain specific applications to
operate on artifacts. Actor:a_bob uses the Application:textEditor_bob and has the role
Role:reviewer_bob. This role implies a restricted action set that is available to operate on
artifacts. Usually, reviewers add comments to the text and reference other artifacts for
supporting their claim. But, reviewers are not allowed to edit or delete text. While using
the Application:richTextEditor_bob, Actor:a_bob has the role Role:author_bob.

5.2. User workspaces

Within a global collaboration space each user has its own user workspace: UserWork-
space:uw_alice and UserWorkspace:uw_bob (cf. Figure 7). As each user's workspace can
be configured differently, a user workspace defines a set of available applications. Each
of the two actors (Actor:a_alice and Actor:a_bob) interacts with two applications that
reside in the corresponding user workspace. As soon as an individual, e.g. Arti-
fact:textDocument, is accessed by more than one user, it is used collaboratively. Figure 8
shows the case of a collaborative text editor application with two individuals Applica-
tion:textEditor_alice and Application:textEditor_bob accessing the shared individual
Artifact:textDocument. Actions, e.g. AddShape:as_alice or OpenText:ot_bob, are used to
describe an interaction between actors and the applications. When interacting with an
application, actors perform actions which the application is capable of and which are al-
lowed by their role. An application uses services, e.g. Service:lineTo_alice or Ser-
vice:setContent_bob, to operate on artifacts, e.g. Artifact:image or Artifact:textDocument.
Artifacts may be extended with coordination specific data and services, e.g. locking in-
formation.

22

Figure 8 Basic interactions between user workspaces and shared model

5.3. Collaborative applications

The previous section decomposed a global collaboration space into user workspaces.
These user workspaces offer applications to their users which in the sense of service-
oriented architectures can be further decomposed. For that purpose, we consider that
collaborative applications implement the model-view-controller (MVC) paradigm34 (cf.
Figure 9). Actors interact with the application by performing actions allowed by their
roles. These actions are received by the corresponding controller components of the
application. In Figure 9, Actor:a_alice performs an EditText:et_alice. This action is
received by the Controller:textDocument_alice. The controller then uses the
Service:setContent_alice to modify the Artifact:textDocument. As in MVC, the shared
model then uses the Service:notifier_alice and Service:notifier_bob to notify registered
view components, e.g. View:textDocument_alice, about changes of the model. When
receiving such a notification the registered view component can update the display.

23

Figure 9 Decomposition of collaborative applications using the model-view-controller pattern

5.4. Summary

After decomposing and analyzing a global collaboration space, Figure 10 summarizes the
domain model for collaboration and shows the basic classes and their relations that can
be used to describe collaboration context in a global collaboration space. In addition to
the above classes, we introduce the class ApplicationFunctionality used to express the
functionality an Application offers and the class ApplicationFactory describing for each
workspace which applications are available.

Figure 10 Domain model for collaboration in a shared workspace

24

The ApplicationFunctionality class has several subclasses not shown in Figure 10,
e.g., Communication, SharedEditing, Awareness, Management or WorkflowManagement.
All of these classes distinguish further subclasses. The Communication concept, e.g.,
distinguishes between Synchronous and AsynchronousCommunication. The class
SynchronousCommunication then distinguishes between Audio, Video, or Chat.
Similarly, the Awareness class distinguishes between Synchronous and Asynchronous
Awareness. The class SynchronousAwareness then distinguishes between e.g.,
ActiveNeighbors, ActivityIndicator, RemoteFieldOfVision, RemoteCursor, Telepointer, or
UserList. The Management class, e.g., distinguishes functionality for AccessRight,
Session, User, or ConcurrencyControlManagement. The SharedEditing class
distinguishes different kinds of editors for, e.g., Text, RichText, Image or Calendar. Most
of these classes are derived from patterns for computer-mediated interaction46 which
describe best practices for designing tools for collaboration.

Figure 11 Application functionality concepts and relations

Figure 11 shows an excerpt of this domain model class hierarchy highlighting the
Chat application functionality. As result, each application which supports chat
application functionality has to offer at least two action types: OpenChat and SendMsg.

All above classes are useful to model the configuration of shared workspaces and
tools and to capture the current context in the state layer at runtime. In the following
section, we show how adaption rules based on the above domain model are able to
recognize specific collaboration situations and trigger adaption.

6. Applying the approach in collaboration situations

25

In order to assess the applicability of our approach we discuss its application in four typi-
cal collaboration situations:
• Co-location denotes the situation where several people meet at a physical (e.g. meet-

ing room) or virtual location (e.g. shared artifact or shared meeting space),
• Co-access denotes the situation where several people access the same artifact (e.g. a

design drawing or document),
• Co-recommendation denotes the situation where explicit or implicit actions of the

collaborators are used to suggest information resources potentially useful for a com-
mon task, and

• Co-dependency denotes the situation where several tasks, objects or users are depen-
dent (e.g. tasks are dependent on tasks being worked on by other users).

We argue that these situations are typical for many collaboration scenarios or

episodes. For example, while working on projects members meet regularly (co-location),
access and manipulate joint artifacts (co-access), point each other to relevant information
during project work (co-recommendation), and work on dependent tasks or artifacts such
as related documents (co-dependency).

In the following, we will discuss how our approach can be used in each of these
situations. For each situation we will present a short scenario illustrating the situation,
present a relevant part of the domain model (extending the basic domain model presented
in section 4 and 5), show a relevant excerpt of the state model of the current situation,
and discuss how this state model can be contextualized (i.e. filtered to those parts
relevant for making adaptation decisions). We will then show examples of adaptation
rules illustrating how the contextualized state model can be used to decide on
adaptations, and how the adaptation itself is in turn reflected in an adapted state model.

The aim of these scenarios is to provide evidence for the applicability and validity of
our approach.

6.1. Co-Location

Co-location occurs when two or more people, artifacts or devices are physically near to
each other. Co-location affords a range of adaptations, for example, facilitating the use of
nearby devices or automatically setting up the collaboration system for joint tasks or in-
formation access.

Scenario: Alice and Bob, jointly working on a report, gather in a meeting room
equipped with a large shareable display. Sensors recognize and identify the two persons.
The system infers that they will likely work on the current report. It activates the display
and shows the report in the workspace. Alice and Bob can now immediately start
discussing the latest version.

For this scenario, we extend the domain model shown in Figure 10 by a class for
locations and a class for devices. An actor works with a device, such as a computer or a
display, so the device must be able to display artifacts. Additionally, each actor and each
device can be at some location. Actors who are at the same location are linked by an

26

additional relation isLocatedWith (see Figure 11). This relation is instantiated by sensing
rules as described in 4.1.2.

Figure 12 Excerpt from Figure 10 extending the domain model with classes for "Location" and "Device"

The state is contextualized by rules (cf 4.1.3) expressing which concepts or
individuals are important for a given focus in this model. In the example, a rule could, for
instance, state: “IF at least two persons are in the same room AND work on the same
artifact AND the room has a shareable device (e.g. a large display) THEN this particular
artifact and device are important.” In this case, persons, shared artifacts and locations are
the focus points, for which potentially important shared artifacts and matching shareable
displays are computed as context. We define the context by examining state objects
reachable from the focus using three conditions: Is the artifact simultaneously being
worked on? Are the persons working on it in the same room? Does the room have a
shareable display? This contextualization rule could be described in SPARQL as follows:

CONSTRUCT {?sub ?pred ?obj}
WHERE {
 ?actor1 hasLocation ?location .
 ?actor2 hasLocation ?location .
 ?actor1 worksOn ?artifact .
 ?actor2 worksOn ?artifact .
 ?location definesPlaceOf ?shareableDisplay .
}

This query CONSTRUCTs the context for a certain focus: The WHERE-part stands
for the focus, from which we define relevant artifacts and devices. CONSTRUCT
extracts a submodel from the state that fulfils the statements inside the WHERE-part.
Optionally, the subgraph could be constrained to assertions matching a predefined
template by using concrete values instead of the wildcards ?sub ?pred ?obj (= any

27

subjects, predicates, and objects allowed). The contextualized state is shown in Figure 12.
In our scenario, it includes the location Location:l_meetingRoom where both
Actor:a_alice and Actor:a_bob are now and the devices at that location (here:
Device:d_shareableDisplay). Furthermore, all artifacts (Artifact:a_report) on which both
actors currently work on collaboratively are included.

Actor:a_alice Actor:a_bob

Location:
l_meetingRoom

Device:
d_shareableDisplay

definesPlaceOf

isAtLocation isAtLocation

Artifact:a_report

isLocatedWith

definesPlaceOf

worksOn worksOn

isAtLocation

Figure 13 Contextualized state after creating a co-located situation

An adaptation rule, which adapts all devices in the room based on the contextualized
state, could be formulated as follows:

// Obtain artifacts and device from the contextualized
// state
artifacts := getArtifactsFromContextualizedState;
device := getDeviceFromContexutalizedState;

// If there are shared artifacts and a shareable device,
// then display the artifacts on the display
IF (notEmpty(artifacts) AND notEmpty(device)) THEN {
 display(artifacts,device);
}

28

The adaptation rule is triggered when all parts of the condition are fulfilled: The
adaptation rule is triggered, because Actor:a_bob enters Location:l_meetingRoom which
Actor:a_alice has entered before. Both work on several artifacts simultanously and
Location:l_meetingRoom provides a shareable display. Consequently, the adaptation rule
obtains an artifact and a shareable display from the contextualized state (neither of the
sets is empty) and Device:d_sharableDisplay will be activated and it will display
Artifact:a_report.

6.2. Co-Access

Co-access denotes the situation where several people access the same artifact. As a sam-
ple scenario consider that a team consisting of Alice and Bob synchronously collaborates
on a shared text document. We assume, that Alice and Bob created local workspaces.
Alice then created a shared text document and opened a shared text editor to work on the
design. Bob later opened the same shared text document to review the current state of the
design. Both team members have different roles defining their tasks within the team.
Both can use a chat application, though none is currently in use.

For this scenario we use the domain model shown in Figure 10. Figure 14 shows the
state representing the above collaboration situation. For space reasons we only show
context individuals and relations relevant for the adaptation discussed below.

Figure 14 Sample state for co-access scenario

We assume that the team members can synchronously access and edit document
parts, which can lead to conflicts or opportunities for collaboration. Different adaptation
possibilities exist to improve the interaction within a team, e.g., to provide additional
awareness information, to enable concurrency control mechanisms, or to establish a
communication possibility. Choosing a good adaptation in such a situation is difficult and
is highly dependent on the context and interaction history of the team.

In Figure 14 two actors access the same Artifact:textDocument and thus are part of
the context of the artifact as well as of each other. Assume that Actor:a_bob, in the role
of a reviewer, might want to ask questions for clarification for which he has to directly

29

contact an author of the document. Given the state described in Figure 14, establishing a
communication possibility among the two actors is one meaningful adaptation possibility.

The tools which are available to all users of a team can be derived from the current
context. In the state shown in Figure 14, both user workspaces, UserWorkspace:uw_alice
and UserWorkspace::uw_bob, are connected to an ApplicationFactory:chat (i.e. both
users are able to use a chat tool though none is opened yet). Thus, in the current state,
Actor:a_alice and Actor:a_bob can both communicate via an Application:chat. The
following pseudo code shows a contextualization rule (denoted contextualization block)
and an adaptation rule which makes use of the contextualized state (cf. Figure 15) created
through the execution of the contextualization block and adapts the users’ workspaces
accordingly:

// Contextualization block, ${focus} = OpenText
artifacts := getArtifactsInContext(${focus});
actors := getActorsInContext(artifacts);
communication := getApplicationsInContext(actors,
 “Communication”);
// Adaptation rule
IF (isNotEmpty(communication)) THEN {
 // Select a communication tool and
 // open it for all actors.
 selectedApplication := selectOneFrom(communication);
 openForAll(selectedApplication,actors);
}

In the contextualization block, we define three successive filtering functions which
extract the contextualized state from the state graph: getArtifactsInContext,
getActorsInContext, and getApplicationsInContext. Below, we
exemplify the definition of contextualization rules by presenting a SPARQL query
implementing getArtifactsInContext(${focus}), where ${focus} denotes
the actual content of the focus variable maintained by the execution environment. If the
current focus conatins several state objects, the execution function may simply execute
the SPARQL query for each element of the focus set and add the results to the
contextualized state graph. In our example, we apply the following contextualization rule
to the State with ${focus} being replaced with the current focus, i.e. the action type
OpenText.

CONSTRUCT { ?sub ?pred ?obj }
WHERE {
 ?action triggers ?controller .
 ?action type ${focus} .
 ?controller uses ?service .

30

 ?service accesses ?artifact
}

For space reasons, we omit the contextualization rules used for the other two filtering
functions in the contextualization block. The resulting contextualized state is shown in
Figure 14.

Figure 15 Contextualized state for co-access scenario

In our scenario, the above adaptation rule is triggered by Actor:a_bob opening the
Artifact:textDocument. The function getArtifactsInContext returns a set of
artifacts which are in the context of the action OpenText:ot_bob. The function
getActorsInContext then calculates all actors which access the artifacts in the
context of OpenText:ot_bob, i.e. in Figure 14 Actor:a_alice. The function
getApplicationsInContext then determines in this case all applications which
support the application functionality Communication and are connected to all actors
accessing the same artifacts, i.e. in Figure 14 ApplicationFactory:chat. The function
selectOneFrom selects from a set of context elements the one which has been used
most by the collaborating actors. The corresponding information is stored as preference
value with the different edges of the context graph. These values are updated via a special
learning algorithm. Here, a Chat application will be opened for Alice and Bob, as a Chat
application is the only application available for Communication within both users'
workspaces. The result of this adaptation is shown in the adapted state in Figure 16. Now,
both actors use an Application:chat and collaboratively access an Artifact:chatContent.

As already mentioned above, different adaptation possibilities may exist if the
Application:textEditor supports the corresponding ApplicationFunctionality. Imagine that
the Application:textEditor in Figure 14 supports different possibilities for achieving
awareness in synchronous interaction by, e.g., a UserList, RemoteCursor,
RemoteFieldOfVision, and an ActivityIndicator. This would be reflected in the
corresponding context graph as relations between the Application:textEditor and the
corresponding ApplicationFunctionality concepts. Not all of the awareness widgets need
to be used to reduce the cognitive load of the actors. In some cases, even all awareness
widgets might be disabled (e.g., when different actors work on completely different parts
of the document). By using the information stored in the context graph an adaptation rule
can enable or disable specific awareness components in specific situations to improve
interaction.

31

Figure 16 Sample adapted state for co-access scenario after adaptation

The following adaptation rule is an example for this: it enables one synchronous
awareness widget (e.g., according to the preferences of the collaborating actors) when at
least one additional actor accesses an artifact in the context of OpenText:ot_bob:

// Contextualization block, ${focus} = OpenText
artifacts := getArtifactsInContext(${focus});
actors := getActorsInContext(artifacts);
applications := getApplicationsInContext(actors,artifacts);
// Adaptation rule
IF (isNotEmpty(applications)) THEN {
 FOREACH (application: applications) DO {
 awareness := getFunctionalityInContext(application,
 “SynchronousAwareness”);
 // Select an awareness widget and
 // open it for all members.
 selectedAwareness := selectOneFrom(awareness);
 openForAll(selectedAwareness,actors);
 }
}

Finally, let us consider an adaptation enabling a concurrency control mechanism. In
this case, the Application:textEditor would have to support the corresponding application
functionalities concerning concurrency control management, e.g.
OptimisticConcurrencyControl, PessimisticConcurrencyControl, or
OperationalTransformation. An adaptation rule, triggered by OpenText:ot_bob, would
again first check whether other actors access the artifacts in the context of
OpenText:ot_bob and, in the positive case, look for available concurrency control

32

mechanisms. From the available mechanisms, one would be chosen according to the
preferences of the collaborating actors.

6.3. Co-Recommendation

Co-recommendation is a technique by which the system suggests potentially relevant
information resources based on prior actions, e.g., ratings, of other group members and
one’s own interest profile. Large-scale recommender systems are in use in areas such as
electronic business. Exploiting implicit or explicit relevance ratings of other users, how-
ever, has also a significant potential for collaborative work. In the following, we will
show how the task of document recommendation can be supported by extending the re-
spective part of the domain model, and by defining appropriate contextualization and
adaptation rules. We also show how spreading activation can be used as a technique for
performing contextualization.

Scenario: Bob works for a building company specializing in refurbishments. He is an
expert in the area of energy efficiency and frequently tags documents or web pages with
keywords from this domain. On this basis, the system classifies documents into a
predefined semantic model. Alice is a new colleague and enters the system to search for
information regarding thermal insulation. The system recommends a number of
documents concerning this topic which have been frequently accessed by other
colleagues.

Figure 17 Excerpt from Figure 10 extending the domain model for co-recommendation.

Later, Bob adds a new document to the system which he rates as relevant for the topic
roof insulation. Based on Bob’s relevance rating, the system recommends this document
to Alice immediately through an appropriate awareness function or when Alice logs in
the next time.

In order to allow the system to recommend Alice documents, we need to extend the
domain model from Figure 17 by including classes for “Topic” and “Document” and

33

create additional relations connecting them. We use a spreading activation algorithm
(described later) to contextualize the state shown in Figure 18.

Each artifact has one or more topics assigned to it and may reference other artifacts as
well. The relation strength represents the degree of ‘relatedness’ of two instances. For
example, Actor:a_alice is very interested in the topic Topic:t_energyInsulations
(represented by a value of 0.9). On the other hand, Topic:t_energyInsulations is only
peripherally covered in the document Artifact:a_manualProofing – which is a manual
for do-it-yourself house proofing –(relation strength is 0.4).

Actor:a_alice

Topic:t_energy
Insulations

Topic:t_roof
InsulationsTopic:

t_soundproofing

Document:
doc_roofInsulations

Document:doc_
buildRegulations

Document:doc_
manualProofing

coveredIn
coveredIn

coveredIn

coveredIn

references

references

interestedIn interestedIn

0.9
0.8

0.7

0.9

0.7

0.8

0.8
0.4

Figure 18 A possible state for co-recommendation scenario. Relation strengths are assigned to each relation (cf.

section 4.1.2). Note that not all relations from the domain model in Figure 17 are included.

In this example, a spreading activation technique is used for contextualizing the
content part of the state. The basic idea is to initially inject activation energy into one or
more initial nodes and then propagate the induced energy through adjacent nodes through
the network with decreasing charge. As a result, the elements with the highest activation
can be selected as the contextually most important ones. The new activation values of the
adjacent nodes j are computed as ijiiij wAAA ∑= + where wij is the relation strength
connecting node i and j. The spreading process from the newly activated nodes is
continued until a predefined stop condition is met (i.e. a distance constraint or number of
spreading steps).

The following algorithm for spreading activation can be used:
1. initialize the graph setting all activation values to 0.
2. select one or more initial nodes and set them to an initial value (e.g. 1.0)

34

3. for each edge eij connecting node i and node j, spread the activation to adjacent
nodes

4. Once a node has propagated its activation mark it as processed
5. stop the spreading if a predefined condition is met

Tracing back to the ideas of Collins and Loftus14 and Anderson3 Spreading Activation

techniques have particularly been used in information retrieval systems (see Ref. 12, 16
and 43 for further details).

For our scenario, a possible contextualization by spreading activation could work as
follows:

1. Select the node Actor:a_alice as initial node (focus, cf. section 4.1.3) with Ai =
1.0

2. activate all vertices connecting Actor:a_alice to adjacent ones
3. propagate the activations until either:

 - the distance from the initial node to the current one is greater than 2
 - the relation strength is greater than 0.5
 - the propagating vertices’ activation is smaller than 0.5

Figure 19 shows the result of the spreading activation algorithm applied to the graph
shown in Figure 18. Note, that activations added at a later step will not be further
propagated in the above two spreading activation algorithms.

Figure 19 Contextualized state after spreading activation on the graph shown in Figure 18. Activations are

shown bold highlighted.

The interpreted state shown in Figure 20 is the result of applying the spreading
activation techniques described above and taking only those objects above an activation
value of 0.5.

35

Actor:a_alice

Topic:t_energy
Insulations

Topic:t_roof
Insulations

Document:
doc_roofInsulations

coveredIn

coveredIn

references

interestedIn interestedIn

0.9
0.8

0.9

0.7

0.8

1

1.61

0.9

1.27

Figure 20 Interpreted state after spreading activation and projection.

Based on the contextualized state, we can formulate an adaptation rule for
recommending to Actor:a_alice artifacts of interest:

//select all documents from the contextualized state with
//an activation > 0.5
documents := getDocumentsWithActivationLargerThan(0.5);
//displaying all documents
IF (notEmpty(documents)) {
 display(documents);
}

The function getDocumentsWithActivationLargerThan returns from the
contextualized state a set of all documents with an activation greater than 0.5.
Accordingly, Actor:a_alice will get a recommendation to read the document
Document:doc_roofInsulations which covers some of the topics she is interested in.

After Actor:a_bob adds the new document Document:doc_newRoofInsulations to the
database leading to a new state (see Figure 21), the system has two alternatives for setting
the new focus for contextualization: Firstly, it can use the newly added document as the
new focus (initial node for the spreading activation algorithm) to select all actors who are
highly interested in the topics this artifact covers. Secondly, the newly added document
Document:doc_newRoofInsulations is recommended to an actor after logging in, thus
using the actor itself as the new focus (initial node of spreading activation as shown
before).

36

Using the first alternative, awareness functions are able to directly inform actors
interested in Topic:t_roofInsulations about the new document
Document:doc_newRoofInsulations added by Actor:a_bob.

Figure 21 Excerpt of the state after Actor:a_bob adds a new document Document:doc_newRoofInsulations.

Note, that in this figure all relations from the domain model (cf. Figure 17) are included.

The contextualized state after applying the spreading activation is illustrated in Figure
22.

37

Actor:a_alice

Actor:a_bob

Topic:t_energy
Insulations

Topic:t_roof
Insulations

Document:doc_new
RoofInsulations

Document:
doc_roofInsulations

Document:doc_
buildRegulations

coveredIn

references

references

references

covers
covers

covers

1.0

0.9

0.7

0.9

0.7
0.8

0.8

addedBy

1.0

interestingFor

0.8

interestingFor

0.9

1.0

1.72

1.7

0.63

0.63

1.0

1,367

Figure 22 Contextualized state after spreading activation with focus on new document.

Further user-based adaptations can be made using a feedback mechanism. If a user is
not satisfied with the recommendations for a specific topic, he can provide feedback
which directly decreases the relation strength connecting the artifact with the given topics
or to decrease the relation strength between references from artifact to artifact or topic to
topic.

6.4. Co-Dependency

Co-dependency denotes the situation where several tasks, objects or users are dependent.
When considering ill-structured problems, such co-dependencies are often expressed by
means of ad-hoc workflows. An ad-hoc workflow helps to structure the implicit
processes of information-centered unstructured interaction. Ad-hoc workflows are colla-
boratively created and explicitly represent the tasks within a team as a shared document.
During the co-construction of an ad-hoc workflow, the group members become aware of
the required steps for the specific tasks and coordinate their efforts.

During the enactment phase of an ad-hoc workflow, the group members document
their progress in the process and thereby increase the awareness of the group's activities.
Since group members are allowed to deviate from the ad-hoc workflow they keep the
flexibility of information-centered collaboration and can adapt their means to address the
ill-structured problem.

38

Consider the example of a design project where Bob and Alice need to perform
several dependent tasks. Each task is defined by its priority, workload, deadline, actor(s),
artifact(s), and a task description.

Figure 23 Excerpt from Figure 9 extending the domain model with the classes for “Deadline”, “Task”, “Capa-
bilities”, and “Project”.

Figure 24 Initial contextualized state

We now discuss some possible adaptations. Let us now imagine the situation where

Bob is assigned a high-priority task, which he has not yet started working upon. When
the remaining time to the deadline is equal to the workload (i.e. the time needed to
perform the task) work on the task needs to commence immediately. In case Bob is not
available (e.g. due to sick-leave or vacation), the project would be delayed. We assume
that the contextualization block shown below extracted the relevant contextualized state
shown in Figure 24 using the focus Project:contici. For space reasons we only show
context individuals and relations relevant for adaptation in Figure 24. Now, a context

39

adaptive system could use the context information shown in Figure 24 to find out that
such a situation is pending, and could use an adaptation rule helping to resolve the
problem. Strategies for resolving the problem include, e.g.:
• Automatic re-assignment strategy: Assigning the task to another available worker

with similar capabilities.
• Manual re-assignment strategy: Presenting this situation (including potential availa-

ble candidates for replacing Bob on this task) to the project manager for manual
resolution.

• Communication strategy: Establishing a quick (virtual) meeting among the available
project members to discuss and resolve the problem.

The automatic re-assignment strategy could be encoded in an adaptation rule as
follows:

// Contextualization block, ${focus} = Project:contici
tasks := getTasksInContext(${focus});
members := getTeamMembersInContext(${focus});
capabilities := getCapabilitiesInContext(tasks);
capActors := getCapableActorsInContext(capabilities);
// Adaptation rule
IF (isNotEmpty(tasks)) THEN {
 FOREACH (task : tasks) DO {
 IF (task.priority=high AND
 task.workload = (task.deadline-currentDate()) AND
 isNotAvailable(task.worker))
 // We have a problem since a critical task
 // is not being worked upon in time
 THEN {
 // Assign a matching replacement and
 // inform him/her immediately
 actor := findAvailableReplacement(task,
 capActors);
 assignActorToTask(task, actor);
 notifyActor(actor, task);
 }
 }
}

The application of this rule leads to the new adapted state presented in Figure 25. As

the figure shows, the relation isResponsibleFor between Actor:a_bob and
Task:guiDesign has been removed while other important relations (e.g. worksOn) has
been created. Actor:a_steve is now responsible for this task, works on the Project:contici,
and has the Role:designer.

40

Figure 25 Adapted state (automatic re-assignment strategy)

The supported manual re-assignment strategy could be encoded as follows:

// Contextualization block, ${focus} = Project:contici
tasks := getTasksInContext(${focus});
members := getTeamMembersInContext(${focus});
capabilities := getCapabilitiesInContext(tasks);
capActors := getCapableActorsInContext(capabilities);
// Adaptation rule
IF (isNotEmpty(tasks)) THEN {
 FOREACH (task : tasks) DO {
 IF (task.priority=high AND
 task.workload = (task.deadline-currentDate()) AND
 isNotAvailable(task.worker))
 // We have a problem since a critical task
 // is not being worked upon in time.
 THEN {
 // Present problem and auxiliary information
 // to project manager
 manager := task.project.manager;
 actorSet := findAvailableReplacements(task,
 capActors);
 presentInformation(manager, task, actorSet);
 }
 }
}

41

The application of this rule leads to the new state presented in Figure 26. Note, in this
case the adaptation rule ends with the display of the case information, possibly in a
separate tool displayed to the project manager. In this tool, the project manager may
browse the task and available actors in actorSet, communicate with them, and decide
upon the actor to be used as a replacement. Thus, replacing Bob as worker of the task
with, e.g., Steve, is done in this tool and thus outside the adaptation engine. However,
once the manager created the new assignment this is reflected in the state and, after
respective contextualization, another adaptation rule may be used to inform the new
worker immediately about the new and urgent responsibility.

Figure 26 Adapted state (manual re-assignment strategy)

Finally, the communication strategy could be encoded in an adaptation rule by

reusing some elements of the prior co-access scenario:

// Contextualization block, ${focus} = Project:contici
tasks := getTasksInContext(${focus});
members := getTeamMembersInContext(${focus});
capabilities := getCapabilitiesInContext(tasks);
capActors := getCapableActorsInContext(capabilities);
// Adaptation rule
IF (isNotEmpty(tasks)) THEN {
 FOREACH (task : tasks) DO {

42

 IF (task.priority=high AND
 task.workload = (task.deadline-currentDate()) AND
 isNotAvailable(task.worker))
 // We have a problem since a critical
 // task is not being worked upon in time
 THEN {
 // Present problem to available project members
 applications := getApplicationsInContext(members,
 "Communication");
 IF (isNotEmpty(applications)))
 THEN {
 selApplication := selectOneFrom(applications);
 openForAll(selApplication, members);
 presentInformation(task, members);
 }
 }
}

The application of this rule leads to the new state presented in Figure 27. Here, the
rule determines the project members and one communication application available to all
of them. Then this communication tool is opened for all members, and information about
the problem is presented to each member, possibly in a separate tool displayed to each of
them.

Figure 27 Adapted state (communication strategy); we assume that each member has access to a Chat applica-
tion as in section 6.2

43

7. An architecture for context-adaptive collaborative workspaces

In the previous sections we proposed a Generic Context Framework (GCF, cf. Section 4),
and a sample domain model for collaborative workspaces (cf. Section 5), and we demon-
strated its applicability in typical collaboration situations (cf. Section 6). In this section,
we discuss how our approach can be implemented and used to extend collaborative appli-
cations with context-based adaptation. Typically, this is done by implementing the core
functionality of the framework in an (adaptation) runtime environment and by providing
another part for integrating collaborative applications.

The core functionality of GCF consists of the layered context model (cf. Section 4.1),
which must be explicitly represented and kept persistent, and the adaptation process (cf.
Section 4.2). The adaptation process (cf. Figure 6) consists of three steps (sensing,
contextualization, and adaptation), which are implemented in an Adaptation Server by
using three engines (Sensing Engine, Contextualization Engine, and Adaptation Engine).
We use dedicated context services (GCF Services) for accessing and manipulating the
Context Model. The Context Model consists of the different GCF Models (e.g., the
Domain Model, the Sensing Rules, the current State (including references to shared
models used by the applications), the Contextualization Rules, the Contextualized State,
the Adaptation Rules, and the Adapted State). Figure 26 shows on the right side the
architecture of the adaptation runtime environment.

Figure 28 Conceptual Architecture

44

In order to make an existing collaborative application context-adaptive, we need to
connect the application with the runtime environment: Firstly, we need to enable the
Adaptation Engine to trigger changes of the Application UI; this is done via an
Adaptation Component that calls specific adaptation functions to be provided by the
application developer. Secondly, we need to enable the Sensing Engine to monitor user
interaction and changes of the computing environment; this is done via Basic Services
that intercept service calls of interfaces that the application developer has registered
previously. Thirdly, we need to enable the Adaptation Engine to request changes of the
Application Logic; this is done via Basic Services, too. A Notifier component is used to
inform Application Logic and Adaptation Server about relevant configuration changes
(used for sensing, or used for UI update). Figure 28 shows on the left side the architecture
of the application environment and its integration with the Adaptation Server.

We use the Adaptation Component to start and stop Application UIs, or to use a
specific interface an application offers to apply adaptation actions to the Application UI.
Currently, this interface contains methods to show or hide a certain GUI component, to
set the focus to a specific GUI component, to modify the content of a GUI component
(e.g. text of a label, button), to highlight a specific GUI component (e.g. by enlarging the
font, changing the sort order or filtering option of a list, marking a text, playing a sound,
changing the color), to maximize or minimize the view, to set the read-only mode, to
scroll to a certain position, or to lock the scrollbars (e.g. in case of a tightly coupled
shared editing session).

User interactions usually imply service calls at the corresponding Application Logic.
In order to monitor these service calls, the developer must register the interfaces an
application offers by using Basic Services. The calls of these interfaces are intercepted by
the Basic Services and forwarded to the Sensing Engine of the Adaptation Server to
update the current State. To apply adaptation actions that change the service composition
of an application, the Basic Services have to call the Application Logic of the
corresponding application via service calls of specific configuration interfaces.

The Notifier is used to inform registered components (e.g., components from
Application Logic or Adaptation Server) about specific events (e.g., changes of the
configuration, or the status of a user). An application developer can integrate this
functionality into his/her application by using the corresponding services. After changing
the configuration of an application the Basic Services use the Notifier to inform registered
clients (at least the Adaptation Component) that the new configuration is set, and the
adaptation of the UI-parts can be performed (e.g., activate a certain view and initialize it).

We implemented the conceptual architecture shown in Figure 26 to support context-
based adaptations within a shared work environment based on Eclipsec. In the current
prototype, the Application UIs in the UI Layer are implemented as plug-ins for Eclipse.
The Application Logic and the Adaptation Server in the Logic Layer are based on
Equinoxd and realize all components as so-called bundles in OSGie. We use R-OSGif for

c http://www.eclipse.org
d http://www.eclipse.org/equinox/
e http://www.osgi.org

45

the communication between the UI and the Logic Layer as well as for the communication
between the Basic Services (Application Logic) and the Sensing Engine of the Adaptation
Server. The Services in the Service Layer can be implemented using different techniques
(e.g., Web Services, Remote Method Invocation). This layer is used by the Application
Logic to build the business logic of the application and to access the corresponding
Artifacts in the Shared Repository. The Context Services and the Context Model are
implemented as bundles and reside within the Adaptation Server.

8. Discussion

Collaborative work is characterized by frequently changing situations and corresponding
demands for tool support and interaction behavior provided by the collaboration envi-
ronment.

Today, collaborating users have to tailor their collaboration environment manually in
a consistent and meaningful fashion, leading to a high cognitive overload, ignoring
potentials for improvement, and subsequent suboptimal collaboration within the team.
Few approaches exist that help to automate or support this adaptation process, e.g.,
through single-user based adaptation of individual tools. However, issues beyond single-
user based adaptation, such as combining individual user models into a group model and
adapting collaboration environments for group use remain unanswered. Open issues
relate to the definition of context (capturing relevant situations and manipulations in a
collaborative environment, formal representation), the support for building context
models (formal representation of context and adaptation knowledge), and the support for
building context-adaptive systems (separation of concerns, modularity, extensibility,
consistency).

In this paper, we presented a generic four layer framework for modeling context in a
collaboration environment in a formal way. By separating concerns between knowledge
layer capturing knowledge about the collaboration domain as well as the task domain(s),
state layer representing a concrete collaboration situation, contextualization layer
defining what part of the state is relevant for a given set of focus objects, and adaptation
layer representing adaptation rules and the resulting adaptation state, we support modular
extension and refinement of context models.

This layered context model is used by a generic adaptation process translating user
activity into state, deriving context for a given focus, and executing adaptation rules on
this context. The execution of the adaptation rules results in adaptation of the user
interface and interaction behavior of the collaboration environment.

Our proposed collaboration domain model (cf. section 5) shows how a collaboration
environment can be modeled to allow both, expressing collaboration situations as well as
formulating meaningful adaptations for specific situations through adaptation rules. In
section 6 we described how our approach can be used to support context-based adaptation

f http://r-osgi.sourceforge.net/

46

in four typical collaboration situations: co-location, co-access, co-recommendation, and
co-dependency.

Finally, section 7 described a conceptual system architecture for implementing
context- adaptive collaboration environments and reported about our prototypical
implementation.

Our approach exceeds current approaches by making first progress towards how
individual user models can be flexibly combined into a group model through representing
the needed aspects on the state layer and defining group context through
contextualization rules in the contextualization layer. Open issues still remain such as
solving conflicting adaptation requirements, different user preferences, or calculating
group interest profiles from individual profiles. Furthermore, the proposed model of a
collaboration environment and its representation in the collaboration domain model
facilitates the definition of adaptation rules that can be applied in specific collaboration
situations (e.g. co-access) and that define meaningful adaptation behavior across tools
and users of the environment (e.g. opening communication tools, establishing sessions,
and showing helpful awareness information). Both, the four layer context modeling
framework and the collaboration domain model were validated by applying them in four
typical collaboration situations.

This work provides the basis for further research into context-based adaptive systems,
including:
• comparison of effects of different adaptation rules in the same collaboration situation

(leading to best practice know how),
• comparing applicability and performance of different contextualization and adapta-

tion approaches (which can be encoded in the respective adaptation server),
• comparing the effect of using different user interfaces and interaction features within

the collaboration environment and its tools, and
• studying learning curves and long-term performance development within collaborat-

ing teams with and without context-based adaptations.

Acknowledgment

This work is supported by the German Research Foundation (DFG) within the cluster
project “Context Adaptive Interaction in Cooperative Knowledge Processes” (CONTici).

References

1. G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper and M. Pikerton, Cyberguide: a
mobile context-aware tour guide, Wireless Networks Nr. 5 Vol. 3, 1997, pp. 421-433.

2. H. J. Ahn, H. J. Lee, K. Cho and S. J. Park, Utilizing knowledge context in virtual collabora-
tive work, Decision Support Systems, Nr. 4, Vol. 39, 2005, pp. 563-582.

3. J. R. Anderson, A spreading activation theory of memory. Journal of Verbal Learning and
Verbal Behavior, 22 (1983), pp. 261–295.

4. J. L. Austin, How to Do Things with Words (Oxford: O.U.P., 1962).
5. U. M. Borghoff, and J. H. Schlichter, Computer-Supported Cooperative Work, Springer-

Verlag Berlin Heidelberg New York, 2000.
6. P. Brèzillon, Using Context for Supporting Users Efficiently, in HICSS’03: Proceedings of the

36th Annual Hawaii International Conference on System Sciences (HICSS’03) – Track 5,

47

2003, pp.127.3.
7. H. Bunt, Context and Dialogue Control, THINK Quarterly, Vol. 3, 1994.
8. L. Buriano, M. Marchetti, F. Carmagnola, F. Cena, C. Gena and I. Torre, The Role of Ontolo-

gies in Context-Aware Recommender Systems, in Proceedings of the 7th International Confe-
rence on Mobile data Management (MDM’06), 2006.

9. R. Carnap, Meaning and Necessity: A Study in Semantics and Modal Logic, 2nd Ed., 1988.
10. H. Chen, T. Finin and A. Joshi, Using OWL in a Pervasive Computing Broker, Workshop on

Ontologies in Agent Systems, 2003.
11. H. Chen, T. Finin and A. Joshi, Semantic Web in the Context Broker Architecture, in Pro-

ceedings of the Second IEEE Internation Conference on Pervasive Computing and Communi-
cations (PerCom’04), 2004.

12. G. Chen and D. Kotz, A survey of context-aware mobile computing research, Dartmouth Col-
lege Technical Report, 2000.

13. P. R. Cohen and R. Kjeldsen, Information retrieval by constrained spreading activation in
semantic networks. Information Processing and Management, 23(2) (1987), pp. 255–268.

14. A. M. Collins and E. F. Loftus, A Spreading Activation Theory of Semantic Processing. Psy-
chological Review, 82(6) (1975), pp. 407–428.

15. M. Constantino-Gonzalez and D. D. Suthers, Automated Coaching of Collaboration Based on
Workspace Analysis: Evaluation and Implications for Future Learning Environments, Pro-
ceedings of the 36th Annual Hawaii International Conference on System Sciences (HICSS’03)
– Track 1 (2003).

16. F. Crestani, Application of spreading activation techniques in information retrieval. Artificial
Intelligence Review, 11(6) (1997), pp. 453–482.

17. G. M. Davies and D. M. Thomson, Memory in Context; Context in Memory (John Wiley &
Sons Inc., 1988), pp. 1-10.

18. A. K. Dey, G. D. Abowd, P. J. Brown, N. D. Davies, M. Smith and Pete Steggles, Towards a
Better Understanding of Context and Context-Awareness, in Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing, 1999, pp. 304-307.

19. A. K. Dey, Understanding and using Context, Personal Ubiquitous Computing Nr. 1 Vol. 5
(2001), pp. 4-7.

20. A. K. Dey, R. Hamid, C. Beckmann, I. Li and D. Hsu, a CAPella: Programming by Demon-
stration of Context-Aware Applications, in Proceedings of the SIGCHI conference on human
factors in Computer Systems (CHI’04), 2004, pp. 33-40

21. C. Dorn and S. Dustdar, Sharing hierarchical context for mobile web services, Distributed
parallel Databases Nr. 1 Vol. 21 (2007), pp. 85-111.

22. C. Dorn, H. Truong and S. Dustdar, Measuring and Analyzing Emerging Properties for Auto-
nomic Collaboration Service Adaptation, in Proceedings of the 5th international conference on
Automatic and Trusted Computing (ATC’08), 2008, pp. 162-176.

23. P. Dourish, What we talk about when we talk about context, Personal Ubiquitous Computing
Nr. 1 Vol 8 (2004), pp. 19-30.

24. W. K. Edwards, Putting Computing in Context: An Infrastructure to support extensible con-
text-enhance collaborative Applications, ACM Trans. Computer-Human Interactions Nr. 4
Vol. 12 (2005), pp. 446-474.

25. L. Fuchs, AREA: a cross-application notification service for groupware, in Proceedings of the
sixth conference on Computer Supported Cooperative Work (ECSCW’99), 1999, pp. 61-80.

26. T. Gross and W. Prinz, Modelling Shared Contexts in Cooperative Environments: Concept,
Implementation, and Evaluation, Computer Supporter Cooperative Work, Vol. 13, 2004, pp.
3-4.

27. J. M. Haake, T. Schuemmer, A. Haake, M. Bourimi and B. Landgraf, Supporting flexible
collaborative distance learning in the CURE platform, in Proceedings of the Hawaii Interna-
tional Conference on System Sciences (HICCS-37), 2004.

28. J. M. Haake, A. Haake, T. Schuemmer, M. Bourimi and B. Landgraf, End-User Controlled
Group Formation and Access Rights Management in a Shared Workspace System, in Proceed-

48
ings of the 2004 ACM conference on Computer supported cooperative work (CSCW’04),
2005, pp. 554-563.

29. A. Huegli and P. Luebcke, rororo Philosophielexikon, 2001.
30. T. Hussein, D. Westheide and J. Ziegler, Context-adaptation based on Ontologies and Spread-

ing Activation, LWA 2007 : Lernen – Wissen – Adaption, ed. A. Hinneburg, 2007, pp. 361-
366.

31. J. W. Kaltz and J. Ziegler, A conceptual model for context-aware Web Engineering, In Pro-
ceedings Workshop on Modelling and Retrieval of Context, Vol. 114, 2004.

32. J. W. Kaltz, J. Ziegler and S. Lohmann, RIA – Revue d'Intelligence Artificielle, Special Issue
on Applying Context-Management, 19(3), S. 439-458, 2005.

33. A. Kobsa, Generic User Modeling Systems, in Methods and Strategies of Web Personaliza-
tion, eds. P. Brusilovsky, A. Kobsa and W. Neidl (Springer Verlag, Berlin, Heidelberg, New
York, 2007), pp. 136-154.

34. G. E. Krasner and S. T. Pope, A Cookbook for Using the Model-View-Controller User Inter-
face Paradigm in Smalltalk-80, Journal of Object-Oriented Programming Nr. 3 Vol. 1 (1988),
pp. 26-49.

35. B. MacIntyre, E. D. Mynatt, S. Voida, K. M. Hansen, J. Tullio and G. M. Corso, Support for
Multitasking and background awareness using interactive peripheral displays, in Proceedings
of the 14th annual ACM symposium on user interface software and technology (UIST’01),
2001, pp. 41-50.

36. B. Malinowski, The Problem of Meaning in primitive Languages, The Meaning of Meaning
(1923), pp. 146-152.

37. M. A. Martinez-Carreras, A. Ruiz-Martinez, A. F. Gomez-Skarmeta and W. Prinz, Designing
a Generic Collaborative Working Environment, In Proceedings of IEEE International Confe-
rence on Web Services, 2007, pp. 1080-1087.

38. D. D. Mittleman, R. O. Briggs, J. Murphy and A. Davis, Toward a Taxonomy of Groupware
Technologies, in Proceedings of the 14th Collaboration Researchers’ International Workshop
on Groupware (CRIWG 2008), 2008, pp. 307-321.

39. W. Prinz and B. Zaman, Proactive support for the organization of shared workspaces using
activity patterns and content analysis, in Proceedings of the 2005 international ACM GIG-
GROUP conference on supporting group work (GROUP’05), 2005, pp. 246-255.

40. W. Prinz, H. Loh, M. Pallot, H. Schaffers, A. Skarmeta and S. Decker, ECOSPACE – To-
wards an Integrated Collaboration Space for eProfessionals, in Proceedings of the Interna-
tional Conference on Collaborative Computing: Networking, Applications and Worksharing,
2006, pp. 39-45.

41. M. Rittenbruch, Atmosphere: towards context-selective awareness mechanisms, in Proceed-
ings of the 8th International Conference on Human-Computer Interaction, 1999, pp. 328-332.

42. J. Roth, Mobile Computing (dpunkt.verlag, 2nd. Edition, 2005).
43. G. Salton and C. Buckley, On the use of spreading activation methods in automatic informa-

tion. In Yves Chiaramella (Ed.), Proceedings of the 11th annual international ACM SIGIR
conference on Research and development in information retrieval (pp. 147–160) 1988. Gre-
noble, France: ACM.

44. D. Schall, H. Truong and S. Dustdar, Unifying Human and Software Services in Web-Scale
Collaborations, IEEE Internet Computing Nr. 3 Vol. 12 (2008), pp. 62-86.

45. B. Schilit, N. Adams and R. Want, Context-Aware Computing Applications, (IEEE) Work-
shop on Mobile Computing Systems and Applications, 1994.

46. T. Schuemmer and S. Lukosch, Patterns for Computer-Mediated Interaction (John Wiley &
Sons, Ltd., 2007).

47. T. Strang and C. Linnhoff-Popien, A Context Modeling Survey, Workshop on Advanced Con-
text Modelling, Reasoning and Management, The Sixth International Conference on Ubiquit-
ous Computing, 2004.

48. S. Voida, E. D. Mynatt, B. MacIntyre and G. M. Corso, Integrating Virtual and Physical Con-
text to Support Knowledge Workers, IEEE Pervasive Computing, Nr. 3, Vol. 1, 2002, pp. 73-
79.

49

49. M. Vonrueden and W. Prinz, Distributed Document Contexts in Cooperation Systems, in

Modeling and Using Context, 6th International and Interdisciplinary Conference (CONTEXT
2007), 2007, pp. 507-516.

50. X. H. Wang, D. Q. Zhang, T. Gu and H. K. Pung, Ontology Based Context Modeling and
reasoning using OWL, in Proceedings of the Second IEEE Annual conference on Pervasice
Computing and Communications Workshops, 2004.

51. T. Winograd, Architectures for Context, Human-Computer Interaction, Vol. 16 (1991), pp.
401-419

52. V. Wulf and B. Golombek, Exploration Environments – Concepts and Empirical Evaluation,
in Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting Group
Work (GROUP’01), 2001, pp. 107-116

53. T. Ziemke, Embodiment of Context, in Proceedings of ECCS, 1997.
54. A. Zimmermann, A. Lorenz and R. Oppermann, An Operational Definition of Context, Mod-

eling and Using Context (2007), pp. 558-571.

