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Well-Structured Graph Transformation Systems
with Negative Application Conditions?

Barbara König and Jan Stückrath

Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

Abstract. Given a transition system and a partial order on its states,
the coverability problem is the question to decide whether a state can be
reached that is larger than some given state. For graphs, a typical such
partial order is the minor ordering, which allows to specify “bad graphs”
as those graphs having a given graph as a minor. Well-structuredness of
the transition system enables a finite representation of upward-closed sets
and gives rise to a backward search algorithm for deciding coverability.
It is known that graph tranformation systems without negative appli-
cation conditions form well-structured transition systems (WSTS) if the
minor ordering is used and certain condition on the rules are satisfied.
We study graph transformation systems with negative application condi-
tions and show under which conditions they are well-structured and are
hence amenable to a backwards search decision procedure for checking
coverability.

1 Introduction

Graph transformation systems (GTS) [16] are a Turing-complete model of com-
putation, which means that many properties of interest, especially concerning
reachability and coverability (“Is it possible to reach a graph that contains a
given graph as a subgraph?”) are undecidable. Naturally, one obtains decid-
ability of both problems when restricting to finite-state graph transformation
systems, i.e., systems where only finitely many graphs up to isomorphism are
reachable from a given start graph. However, similar to the case of Petri nets
[5], it is possible to obtain decidability results also for certain (restricted) classes
of infinite-state graph transformation systems [2]. This is important for many
applications, since systems with infinitely many states arise easily in practice.

A good source of decidability results for the coverability problem are so-called
well-structured transition systems [7,1]. They consist of a (usually infinite) set
of states, together with a transition relation and a well-quasi-order (see Defini-
tion 1), such that the well-quasi-order is a simulation relation for the transition
system. Standard place/transition nets can be seen as well-structured transi-
tion systems, furthermore systems with some degree of lossiness (such as lossy
channel systems, where channels might lose messages) are well-structured.

? Research partially supported by DFG project GaReV.



Well-structuredness implies that every upward-closed set of states can be
represented by a finite set of minimal states (this is a direct consequence of the
properties of a well-quasi-order). Under some additional conditions it is possible
to perform a backwards search in order to compute and represent (via minimal
states) all predecessors of an upward-closed set. This allows to answer coverabil-
ity questions algorithmically.

In [11,10] we have shown how (single-pushout) graph transformation systems
with edge contraction rules can be seen as well-structured transition systems.
As well-quasi-order we used the minor ordering on graphs, which is shown to be
a well-quasi-order in the famous Robertson-Seymour theorem [14,15].

However, the theory in [11] does not apply to graph transformation systems
with negative application conditions [8,4], which often arise in practice. Such
negative application conditions disallow the application of a rule if a certain
“forbidden” subgraph is present.

Here we study such graph transformation systems with negative application
conditions and show that they are well-structured under certain conditions (for
instance in the presence of deletion and contraction rules that arise naturally
in lossy systems). While this result is fairly straightforward to prove, it is more
difficult to perform a backwards step and hence obtain a decision algorithm.
We here give a general procedure for computing the predecessor set and show
that it terminates in specific cases, i.e., for certain types of negative application
conditions. We illustrate the theory with various examples, especially we study
a (faulty) termination detection protocol and apply the decision procedure to
the set of rewriting rules describing the protocol.

Proofs can be found in Appendix A.

2 Preliminaries

2.1 Well-Structured Transition Systems

We will now give the definitions concerning well-structured transition systems,
following the presentation in [7].

Definition 1 (wqo and upward closure). A quasi-order1 ≤ (over some set
X) is a well-quasi-order (wqo) if for any infinite sequence x0, x1, x2, . . . of ele-
ments of X, there exist indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that x ≤ y and x ∈ I implies
y ∈ I. A downward-closed set can be defined analogously.

For a subset Y ⊆ I, we define its upward closure ↑Y = {x | ∃y ∈ Y : y ≤ x}.
Then, a basis of an upward-closed set I is a set Ib such that I = ↑Ib.

The definition of well-quasi-orders gives rise to some properties which are
especially important for the backwards algorithm presented later.

Lemma 1. Let ≤ be a well-quasi-order, then the following two statements hold:

1 Note that a quasi-order is the same as a preorder.
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1. Any upward-closed set I has a finite basis.
2. For any infinite, increasing sequence of upward-closed sets I0 ⊆ I1 ⊆ I2 ⊆ . . .

there exists an index k ∈ N such that Ii = Ii+1 for all i ≥ k.

Definition 2 (Well-structured transition system). A well-structured tran-
sition system (WSTS) is a transition system T = (S,⇒,≤), where S is a set of
states and ⇒ ⊆ S × S, such that the following conditions hold:

1. Well-quasi-ordering: ≤ is a well-quasi-order on S.
2. Compatibility: For all s1 ≤ t1 and a transition s1 ⇒

s2, there exists a sequence t1 ⇒∗ t2 of transitions such
that s2 ≤ t2.

t1 t2

≤ ≤

s1 s2

*

Given a set I ⊆ S of states we denote by Pred(I) the set of direct predecessors
of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I : s ⇒ s′}. Furthermore Pred∗(I) is the set
of all predecessors which can reach some state of I with an arbitrary sequence of
transitions. Let (S,⇒,≤) be a WSTS. Backward reachability analysis involves
the computation of Pred∗(I) as the limit of the sequence I0 ⊆ I1 ⊆ I2 ⊆ . . . where
I0 = I and In+1 = In ∪ Pred(In). However, in general this may not terminate.
For WSTS, if I is upward-closed then it can be shown that Pred∗(I) is also
upward-closed (compatibility condition) and that termination is guaranteed (see
Lemma 1).

Definition 3 (Effective pred-basis). A WSTS has an effective pred-basis if
there exists an algorithm accepting any state s ∈ S and returning pb(s), a finite
basis of ↑Pred(↑{s}).

Now assume that T is a WSTS with effective pred-basis. Pick a finite basis
Ib of I and define a sequence K0,K1,K2, . . . of sets with K0 = Ib and Kn+1 =
Kn ∪ pb(Kn). Let m be the first index such that ↑Km = ↑Km+1. Such an m
must exist by Lemma 1 and we have ↑Km = Pred∗(I).

The covering problem is to decide, given two states s and t, whether starting
from a state s it is possible to cover t, i.e. to reach a state t′ such that t′ ≥ t.
The decidability of the covering problem follows from the previous argument: we
define I = ↑{t} and check whether s ∈ Pred∗(I), i.e., if there exists a s ∈ Km

such that s ≤ s.

Theorem 1 (Covering problem [7]). The covering problem is decidable for
a WSTS with an effective pred-basis and a decidable wqo ≤.

Thus, if T is a WSTS satisfying the extra conditions of Theorem 1 and the
“error states” can be represented as an upward-closed set I, then it is decidable
whether any element of I is reachable from the start state.

2.2 Graph Transformation Systems

We will now introduce the necessary preliminaries in order to define single-
pushout (SPO) graph rewriting. Note that the minor relation used in the follow-
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ing admits a characterization via partial graph morphisms and hence straight-
forwardly integrates with SPO, which is defined in the category of partial mor-
phisms. The concatenation of a rule and a minor morphism is again a rule.

Definition 4 (Hypergraph). Let Λ be a finite set of labels and a function
ar : Λ → N that assigns an arity to each label. A (Λ-)hypergraph is a tuple
(VG, EG, cG, lG) where VG is a finite set of nodes, EG is a finite set of edges,
cG : EG → V ∗G is a connection function and lG : EG → Λ is the labelling function
for edges. We require that |cG(e)| = ar(lG(e)) for each edge e ∈ EG.

We will simply use graph to denote a hypergraph. To simplify the neces-
sary computations we will only use hypergraphs with at most binary edges,
i.e. |ar(`))| ≤ 2 for all labels `. However note that large parts of the theory
(except Proposition 2) can be extended to the general case.

Definition 5 (Graph morphism). Let G, G′ be (Λ-)graphs. A partial graph
morphism (or simply morphism) ϕ : G ⇀ G′ consists of a pair of partial func-
tions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that for every e ∈ EG it holds
that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is defined.
Furthermore if a morphism is defined on an edge, it must be defined on all nodes
adjacent to it. Total morphisms are denoted by an arrow of the form →.

We will now introduce the notion of (SPO) graph rewriting ([12]) with neg-
ative application conditions.

Definition 6 (Graph rewriting). A rewriting rule is a partial morphism
r : L ⇀ R together with a finite set of negative application conditions. A neg-
ative application condition (NAC) is a total, injective morphism ni : L → Ni.
A match is a total, injective morphism m : L → G. We say that a match m
satisfies a NAC ni if there is no total, injective morphism n′i : Ni → G such that
n′i ◦ ni = m. A rule is applicable to a graph G if there is a match satisfying all
NACs.

For a pair of a rule r and a match m applicable to G, a rewriting step
is obtained by taking the pushout of m and r in the category of partial graph

morphisms. Then G is rewritten to the pushout object H (written as G
r,m⇒ H or

simply G⇒ H).

In [11] so called conflict-free matches are used, which may be non-injective.
However, these matches cannot be used with our variant of negative application
conditions, since the NAC and its match to G are injective and can therefore
not commute with any non-injective match m. Note that any injective match is
also conflict-free.

In this paper a graph transformation system (GTS) is simply a finite set of
rules, not necessarily associated with an initial graph. For verification purposes
initial and final graphs can be used as shown in the example below.

Example 1. For the later illustration of a backward step and the backward search
algorithm, we introduce the following termination detection protocol as a run-
ning example. A similar protocol was used in [2] but without negative application
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DA

A

(a) A possible initial graph

(D)A

termination

(b) The final graph

Fig. 1: The protocols initial graph and it error configuration

conditions. For lossy systems this protocol is erroneous and we will show how
the backwards search will detect the error.

The protocol consists of normal processes which can be active (A) or passive
(P ) and a detector process which can be active (DA) or passive (DP ). The label
(D)A thereby stands both for an active detector and an active normal process
((D)P is used analogously). The initial graph is a directed circle with an active
detector and an active (normal) process (see Fig. 1a). Additional active processes
can be generated (Fig. 2d) and active processes may become passive (Fig. 2b).
When the detector becomes passive start and end flags are created and attached
to the corresponding detector (Fig. 2a). The end flag can be forwarded along
passive processes (Fig. 2e) and when the end flag was forwarded around the entire
ring to reach the detector again, a termination flag is created (Fig. 2f) stating
that all processes are passive. Any active process can reactivate a passive process
(Fig. 2c) if there is no start flag between them. This ensures that all processes
(including the detector) between the start and the end flag are passive. The
absence of the start flag is thereby ensured by a negative application condition,
which is indicated by the dashed edge.

Additionally there are rules simulating the lossiness of the system. Processes
can leave the ring (Fig. 2g, Fig. 2h) and flags can be lost (Fig. 2i, Fig. 2j). We
will later show that this GTS is well-structured.

The protocol is correct if and only if from the initial graph no graph can be
reached which contains the final graph (Fig. 1b), because this would mean that
a termination flag was generated although there still exists an active process.

2.3 Minors and Minor Morphisms

We will now introduce the notion of graph minor [14,15] and recall some results
from [11].

Definition 7 (Minor). A graph M is a minor of a graph G (written M ≤ G),
if M can be obtained from G by (repeatedly) performing the following operations
on G:

1. Contraction of an edge. In this case we remove the edge, choose an arbitrary
partition on the nodes connected to the edge and merge the nodes as specified
by the partition. (This includes edge deletion as a special case.)

2. Deletion of an isolated node.
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1 2
DA ⇒

1 2
DP

start end

(a) Deactivate the detector

1 2
A ⇒

1 2
P

(b) Deactivate a non-detector

1 2 3

(D)A

4

(D)P

start

⇒
1 2 3

(D)A

4

(D)A

(c) Activate processes

1 2

(D)A ⇒
1 2

(D)A A

(d) Create new processes
1 2

P

3

end

⇒
1 2

P

3

end

(e) Forward termination message

1 2
DP

3

end start

⇒
1 2

DP

3

termination

(f) Termination detection

1 2

(D)A ⇒
1,2

(g) Active process leaves

1 2

(D)P ⇒
1,2

(h) Passive process leaves

1

start/end

⇒
1

(i) start or end-message lost

termination ⇒

(j) termination flag lost

Fig. 2: The basic rules of a termination detection protocol with NACs

Note that since we restrict the arity of any edge to at most two, there is only
one possible partition if the arity is zero or one and only two possible partitions
if the arity is two (one of which coincides with edge deletion).

The Robertson-Seymour Theorem [14] says that the minor order is a well-
quasi-order even if the edges and vertices of the graphs are labelled from a well-
quasi-ordered set, and also for hypergraphs and directed graphs (see [10,15]).
Here we use the minor ordering presented in [11], but since we restrict the arity
of edges, the ordering is essentially the same as for directed graphs.

Now any GTS with negative application conditions which satisfies the com-
patibility condition of Definition 2 (with respect to the minor ordering), can
be analysed using the theory of WSTS. But before we characterize such GTS
we first need the definition of minor morphisms and their properties. A minor
morphism is a partial morphism that identifies a minor of a graph.
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Definition 8 (Minor morphism). A partial morphism µ : G ⇀M is a minor
morphism (written µ : G 7→M) if

1. it is surjective,
2. it is injective on edges and
3. whenever µ(v) = µ(w) = z for some v, w ∈ VG and z ∈ VM , there exists a

path between v and w in G where all nodes on the path are mapped to z and
µ is undefined on every edge on the path.

For a minor morphism µ we define ‖µ‖ to be the number of nodes and edges on
which µ is undefined.

We call a minor morphism µ a one-step minor morphism if µ deletes exactly
one node or contracts or deletes exactly one edge, i.e. additionally to the above
restrictions it holds that either:

1. µ is injective, defined on all edges and defined on all but one node or
2. µ is defined on all nodes, defined on all but one edge and is injective on all

nodes not attached to the undefined edge.

In [15] a different way to characterize minors is proposed: a function, going
in the opposite direction, mapping nodes of M to subgraphs of G. This however
cannot be seen as a morphism in the sense of Definition 5 and we would have
problems integrating it properly into the theory of graph rewriting. However, in
[10] it is proven, that our minor ordering is a wqo and that the following facts
about minor morphisms hold.

Lemma 2 ([11]). The class of minor morphisms is closed under composition.

Lemma 3 ([11]). M is a minor of G iff there exists a minor morphism µ :
G 7→M .

Lemma 4 ([11]). Pushouts preserve minor morphisms in the following sense: If
f : G0 7→ G1 is a minor morphism and g : G0 → G2 is total, then the morphism
f ′ in the pushout diagram below is a minor morphism.

G0 G1

G2 G3

f

g g′

f ′

Note that Lemma 4 is also valid if g is not total and we require that f does
not contract any edge deleted by g. In the following we will also use this variant
of the lemma. Finally we need the following lemma, which is a weaker version
of a related lemma in [11].

Lemma 5 ([11]). Let ψ1 : L→ G be total and injective. If the diagram below on
the left is a pushout and µ : H 7→ S a minor morphism, then there exist minors
M and X of R and G respectively, such that:
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1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms µG ◦ ψ1 : L→ X and ϕ1 : M → S are total.

L R

G H

S

L R M

G H

SX

ψ2

ψ1 ψ′1
ψ′2

µ

ψ2 µR

ψ1 ψ′1

ϕ1

ψ′2

µG

ϕ2

µ

Furthermore we need the following additional properties.

Lemma 6 (Reordering of minor decompositions). Every minor morphism
µ can be decomposed into a finite sequence of one-step minor morphisms µi such
that µ = µ1 ◦ . . . ◦ µn and there are k, ` with 1 ≤ k ≤ ` ≤ n+ 1 and

1. µi with 1 ≤ i < k is undefined on one node (node deletion),
2. µi with k ≤ i < ` is undefined on one edge and not injective on nodes (edge

contraction) and
3. µi with ` ≤ i < n+ 1 is undefined on one edge and injective on nodes (edge

deletion).

3 Well-structuredness and Negative Application
Conditions

One condition for the backwards algorithm to compute correct results is well-
structuredness. In the following proposition we formulate a rather general con-
dition for a GTS with negative application conditions which ensures that it is
well-structured with respect to the minor ordering. We have to ensure that when-
ever M ≤ G and a rule r : L ⇀ R can be applied to M , the same rule can be
applied to G. There are two problems that might disallow the rule application:
G might contain a disconnected copy of the left-hand side L (which must be
contracted to form a match of L in M) and G may contain more structure such
that a valid match of L in M might not satisfy the NACs when extended to G.
In both cases we ensure that G can be rewritten to G′ in which both problems
disappear.

Proposition 1. A GTS containing rules with negative application conditions is
well-structured wrt. the minor ordering if for every rule r : L ⇀ R with negative
application conditions ni : L → Ni and every minor morphism µ : G 7→ M the
following holds: for every match m : L → M satisfying all NACs (indicated by
the crossed-out arrows), G can be rewritten to some graph G′ such that there is
a match m′ : L → G′ satisfying all NACs and a minor morphism µ′ : G′ 7→ M
with m = µ′ ◦m′ (see diagram below).
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G L Ni

M

G L Ni

G′

M

µ m

ni

µ m

m′

µ′

*

ni

“Lossy systems” (such as the GTS of Example 1) usually already satisfy
Proposition 1 and other GTS can be transformed into GTS satisfying the condi-
tions by adding rules for lossiness. In general this is possible by introducing rules
that contract and deleted nodes and edges for every label (so called minor rules).
The contraction rules enable the simulation of edge contractions performed by
µ to generate a graph where the rule matches, while the deletion rules can be
used to destroy matches of negative application condition. In the latter case it is
sufficient to introduce rules which only delete edges that are associated with a
negative application condition, such as rules νe : N → N \{e} for all edges e not
in the range of n : L → N . Note that any introduction of new rules will cause
the backward search to compute an overapproximation for the original GTS.

For the computation of the finite basis of Pred(S) we first introduce the
notion of edge decontraction and bounding functions.

Definition 9 (Edge decontraction). Let G be a graph. We define expand(G)
to be the set of all graphs G′ ≥ G such that there is an edge e in G′ and the
contraction of e results in a graph isomorphic to G.

Definition 10 (Bounding function). Let T be a GTS with rule set R and
let bTr : Matches → N0 be a function, where (r : L ⇀ R, N ) ∈ R is a rule
and Matches is the set of all matches m : L → G of r to some graph G, not
necessarily satisfying all NACs N . We call bTr a bounding function if every
minor morphism µ : G′ 7→ G, where there is a match m′ : L → G′ satisfying all
NACs, can be decomposed into minor morphisms µ′ : G′ 7→M and µ′′ : M 7→ G
satisfying the following properties:

1. µ = µ′′ ◦ µ′,
2. µ′ ◦m′ is a total, injective match of L in M and satisfies all NACs and
3. ‖µ′′ ‖ ≤ bTr (m).

The bounding function is used to calculate the maximal number of decon-
tractions needed to compute a graph of the predecessor basis. The existence of
such a function guarantees termination of a backward step and we will prove its
existence for special cases. In the following we will omit the superscript T , since
the GTS of interest is fixed.

We will now describe a procedure for computing an effective pred-basis (see
Definition 3). In essence, given a graph S, we have to apply a rule r : L ⇀ R
backwards. However, there are several complications, caused by the fact that
S does not simply stand for itself, but represents a whole set of graphs, the
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upward-closure of S (i.e., all graphs that have S as a minor). Hence we have to
consider the following facts:

– S might not contain an entire (co-)match of R, but it might represent graphs
that contain such matches. In order to solve this problem we do not simply
apply r backwards, but first compute all minors of R and look for matches
of those minors (see Step 2 below).

– Whenever, after doing a backwards step, we find that the resulting graph
X ′ contains a non-injective match of L, we do not discard X ′. Again, this is
because X ′ directly is not a predecessor, but it represents other graphs which
are predecessors of graphs represented by S. Those graphs can be obtained
by “forcing” the match to be injective via edge decontractions (Step 3).

– Finally, we have to solve the problem that the backwards step might result
in a graph X which may contain an injective match, but does not satisfy the
NACs. Similar to the case above, we have to find larger graphs represented
by X by edge decontractions such that the resulting graphs do satisfy the
NACs (Step 4).

The last item is more complex than the second-last: while we can bound the
number of steps needed to “make” a match injective via decontractions by the
number of nodes which are merged, this is not so easy in the case of NACs: by
decontractions we may destroy a NAC, but create a new one. Since we want to
represent upwards-closed sets wrt. a well-quasi-order, we can be sure that there
are finitely many representatives. However, when searching for them, we might
not know whether we have already found all of them. This is where the bounding
function of Definition 2 comes into play in order to terminate the search.

Procedure 1. Let T be a GTS with the rule set R satisfying the compatibility
condition, as described in Proposition 1. We assume that there is a bounding
function for every rule of T .

In the following we give a description of a procedure pbn(S) which generates
a finite basis for the set of graphs reaching a graph larger or equal to S in one
step. The first two steps are basically identical to the procedure presented in [11].

1. For each rule (r : L ⇀ R, N ) ∈ R, where N is the set of all negative
application conditions of r, let MR be the set of all minor morphisms with
source R. Furthermore let br be the bounding function of r.

2. For each (µ : R 7→ M) ∈ MR consider the rule µ ◦ r : L ⇀ M and perform
the following steps.

3. For each total match m′′ : M → S compute all minimal pushout comple-
ments X ′ such that m′ : L → X ′ below is total and injective on edges.2

Then repeatedly apply the expand -function in order to split non-injectively
matched nodes and to obtain a basis for all graphs X, of which X ′ is a minor
and which contain an injective match of L (see diagram below).3

2 The term minimal is used with respect to the minor ordering. For more details
see [11].

3 Alternatively the graph can be partially enlarged before applying the rule backwards
to create an initial, injective match as explained in [2].
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L M

X ′ SX

µ ◦ r

m′ m′′

r′

m

4. For each such X compute every total, injective morphism nji : Ni → X of
any NAC (ni : L→ Ni) ∈ N that commutes with the match. If there is none,
store X and proceed with the next X.
If there is at least one such morphism, compute expand(X). For each X ∈
expand(X) do the following:
– Let µ : X 7→ X be the minor morphism that exists by Definition 9 and

Lemma 3.
– If there is no m : L → X, such that m = µ ◦m, i.e. the decontraction

destroyed the match, discard X.
– If there is a match m satisfying all NACs, store X and proceed with the

next X.
If none of the previous two conditions hold, repeat Step 4 with the graph X
and the match m. Stop the recursion after br(m) steps.4

5. The set pbn(S) contains all graphs X stored after the last repetition of the
previous step.

Example 2. To illustrate the handling of negative application conditions we ex-
emplarily apply rule 2c of our running example backward to the graph G in
Figure 3a (_ indicates a backward step). In Step 3 of Procedure 1 among oth-
ers the graph H in Figure 3a is generated (µ is the identity), but the rule cannot
be applied (in forward direction) to H to reach G since the negative application
condition is not satisfied. Hence, in Step 4 the minimal set of graphs larger than
H has to be found which can be rewritten to some graph larger than G. All
eight resulting graphs are shown in Figure 3b. The “decontracted” edge in the
middle can point in both directions and be labeled A, P, DA or DP. All other
decontractions either destroy the match or do not destroy the match of the NAC,
which in both cases produces graphs where the rule is not applicable.

Additional graphs will be generated if different matches of the left-hand side
of rule 2c are used. For instance the graph in Figure 3c is generated (among
others) if only one of the A-edges is matched to the right A-edge of G. An
additional A-edge is created while generating an injective match. Note that the
last graph is immediately deleted since it is larger than G and therefore already
represented. A more comprehensive demonstration of backward steps is done in
Section 4.

We will now state our main theorems: especially we will show that every
graph generated by pbn(S) is in the predecessor set of the upwards-closure of S
and vice versa.

4 Note that applicability of the rule µ ◦ r does not depend on µ and hence we do not
need a bounding function bµ◦r.
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G:

A A

start

_
2c

H:

A P

start

(a) First the left graph G is rewritten to H ignoring the NAC

A P

(D)A/(D)P

start

(b) Eight possible decontractions

A A P

start

(c) Another decontraction with a different match

Fig. 3: Backward step of rule 2c containing a negative application condition

c a b ⇒ a

Fig. 4: A simple rule with a NAC (the dashed part)

Theorem 2. The procedure pbn(S) (Procedure 1) computes a finite subset of
Pred(↑S).

Theorem 3. If there is a bounding function br for every rule r, the set generated
by pbn(S) is a finite basis of ↑Pred(↑S).

Theorem 3 depends on the existence of a bounding function. As we will illus-
trate later, bounding functions are non-trivial to obtain, but we have bounding
functions for specific negative application conditions.

Proposition 2. There is a bounding function for all rules if the corresponding
GTS satisfies the following properties:

1. ar(`) ≤ 2 for all labels ` ∈ Λ and

2. for every negative application condition n : L→ N the graph N has at most
one edge and two nodes in addition to n(L).

Example 3. In the general case the complexity of the bounding function can
grow with the complexity of the match and the NAC. In particular there are
rather simple NACs where decontractions cannot be discarded if they generate
new matches of a NAC. Figure 4 shows a rule together with a NAC (dashed
part of the graph). Assume the left graph in Figure 5 was generated by step 3
of the procedure. The two displayed decontractions lead to the right graph, but
the middle graph does not satisfy the NAC and there is no single decontraction
where the NAC is satisfied and the rightmost graph is represented.

Negative application conditions for arbitrary hypergraphs can therefore re-
quire a complex bounding functions.

12
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Fig. 5: Graphs generated from left to right via decontractions
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Fig. 6: An exemplary sequence of backward steps

4 Verification of a Termination Detection Protocol

As already mentioned the termination detection protocol presented in Example 1
is erroneous for lossy systems. Note also that its NAC satisfies the restrictions of
Proposition 2 and can hence be analyzed automatically. One possibility to derive
(a minor of) the initial graph from the final graph is shown in Figure 6. This
derivation is found by the backward search within eight backward steps each
indicated by _ (together with the used rule). The rules used in the first three
steps and the sixth step only partially match the graph, i.e. not the corresponding
rule r is applied backwards, but the rule µ ◦ r for some minor morphism µ (see
Step 2 of Procedure 1). For instance the minor morphism µ used in the first
step is injective and only undefined on the DP -edge, hence this edge is added
when the rule is applied backwards. In the second step the minor morphism is
undefined for the end flag, which is non-existent at the right place in the graph,
but it is not added, since the rule creates it when applied forward. In all other
steps (except the sixth) r is applied backwards directly, i.e. µ is the identity.

The most interesting step is the third, because rule 2c cannot be applied
directly to the graph, since the match would be non-injective, but the rule can
be applied to some larger graphs which are represented by the given graph. This
backward step is shown in detail in Figure 7, where the diagram of Step 3 of the
procedure is shown with the generated graphs. First the rule is applied back-
wards with a non-injective match replacing the A-edge with a P -edge, producing
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DA
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Fig. 7: The third backward step of the sequence in Fig. 6 in detail

another non-injective match. Since this is not a valid match in the sense of Def-
inition 6, the rule is not directly applicable and the node 1,3 has to be split
such that the match is injective. This is done by decontraction generating the
A-edge (which is just one possibility). The resulting graph is one of the graphs
represented by the previous graph, with the difference that the rule is applicable.

The other five steps are straightforward or similar to the first three. Note
that since in the last step a graph is reached which is smaller or equal to (in this
case isomorphic) the initial graph, the final state is coverable and the protocol
erroneous.

Note that, seen in the other direction, this is not quite a sequence of rewriting
steps of the GTS. Rather, by applying the rules in the forward direction, we
sometimes obtain a graph different from the one in the figure, but represented by
it. Still, following the sequence against the direction of the arrows, it is possible
to reconstruct why the error occurs in the protocol: after the detector first turns
passive, the start flag is lost. Then, the end flag as well as the activation zone
make their tour around the ring. Note that this is possible for the activation
zone since the start flag is no longer there to block rule applications. Then the
detector turns again passive and creates another start flag that reacts with the
end flag of the previous round, leading to an erroneous termination message.

5 Conclusion

We have shown how graph transformation systems with negative application
conditions can be viewed as well-structured transition systems. This is similar
to the case of lossy vector addition systems [3] where lossiness is used in a similar
way in order to deal with inhibiting conditions.

Furthermore we have described a generic backwards search decision proce-
dure and proved that it terminates in specific cases. Termination depends on
the existence of bounding functions and a question left open in this paper is to
prove their existence in the general case.

Once this problem is solved, it could be interesting to study also general
nested application conditions [13,9] and to check whether the results of this
paper can be generalized. Furthermore we plan to look at other kinds of well-
quasi-orders for graphs, possibly for restricted sets of graphs (see [6]).

14



We also plan to extend an existing implementation to deal with negative
application conditions.
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A Proofs

Lemma 6 (Reordering of minor decompositions). Every minor morphism
µ can be decomposed into a finite sequence of one-step minor morphisms µi such
that µ = µ1 ◦ . . . ◦ µn and there are k, ` with 1 ≤ k ≤ ` ≤ n+ 1 and

1. µi with 1 ≤ i < k is undefined on one node (node deletion),
2. µi with k ≤ i < ` is undefined on one edge and not injective on nodes (edge

contraction) and
3. µi with ` ≤ i < n+ 1 is undefined on one edge and injective on nodes (edge

deletion).

Proof. If µ is the identity, the empty sequence satisfies all conditions. So let
µ : G 7→ M be a minor morphism which is undefined on at least one element.
According to Lemma 3 M is a minor of G, hence there is a sequence of node
deletions, edge deletions and edge contractions such that some M ′ isomorphic to
M can be obtained from G by application of this sequence. Each element of the
sequence corresponds to a one-step minor morphism, thus we obtain a sequence
of one-step minor morphisms µi such that µ = µ1 ◦ . . .◦µn ◦ ι, where ι : M ′ →M
is a isomorphism. Note that µn ◦ ι is a one-step minor morphism.

Trivially the deletion of all nodes can be done after all edge deletions and
contractions, since a node must be isolated to be deleted (in one step) and can
therefore be mapped injectively in every one-step minor morphism contracting
or deleting an edge, instead of being deleted directly.

Let µi : Xi 7→ Xi+1 and µi+1 : Xi+1 7→ Xi+2 be one-step minor morphisms for
some 1 ≤ i ≤ n− 1. Let eC , eD ∈ Xi such that µi contracts eC and µi+1 deletes
µi(eD). Then the morphisms µi : Xi 7→ Xi+1, µi+1 : Xi+1 7→ Xi+2 defined as

µi(x) = x if x 6= eD and undefined otherwise

µi+1(x) = µi+1 ◦ µi ◦ µ−1i

are one-step minor morphisms with µi+1 ◦µi = µi+1 ◦µi and µi deletes an edge,
while µi+1 contracts an edge. ut
Proposition 1. A GTS containing rules with negative application conditions is
well-structured wrt. the minor ordering if for every rule r : L ⇀ R with negative
application conditions ni : L → Ni and every minor morphism µ : G 7→ M the
following holds: for every match m : L → M satisfying all NACs (indicated by
the crossed-out arrows), G can be rewritten to some graph G′ such that there is
a match m′ : L → G′ satisfying all NACs and a minor morphism µ′ : G′ 7→ M
with m = µ′ ◦m′ (see diagram below).

G L Ni

M

G L Ni

G′

M

µ m

ni

µ m

m′

µ′

*

ni
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Proof. We have to show that the compatibility condition of Definition 2 ist
satisfied. Let M be a graph which is rewritten to H. Then there is a rule r and
a match m such that the square in the left diagram below is a pushout. Let
G ≥M be a graph, then by Lemma 3 there is µ : G 7→M .

L R

G′

M H

N

m

r

m′

µ′

ni
L R

G′ H ′

M H

N

m

r

m′

r′

µ′ µ′′

ni

By assumption m can be split into a minor morphism µ′ : G′ 7→M and a match
m′ : L → G′ satisfying all NACs, such that G ⇒∗ G′. As shown in the diagram
on the right the pushout (outer square) can be split into two pushouts. Because
µ′ is a minor morphism and µ′ does not contract edges which r′ deletes, we can
conclude from the variation of Lemma 4 that µ′′ is a minor morphism. Note that
µ′ cannot contract edges r′ deletes, because such edges have a preimage in L
and therefore an image in M .

Thus, any graph G ≥ M can first be rewritten to G′ and then to H ′ such
that H ′ ≥ H. Hence the compatibility condition is fulfilled. ut

Theorem 2. The procedure pbn(S) (Procedure 1) computes a finite subset of
Pred(↑S).

Proof. Obviously pbn(S) is finite. Let G′ ∈ pbn(S) be a graph generated by the
procedure. Then there is a graph G, a rule r : L → R, a match m : L → G′

and two minor morphisms µ : R 7→ M and ν : G′ 7→ G (see diagram on the left
below). The graph G′ is generated by expanding some graph G first to produce
an injective match and then to generate a graph where all negative application
conditions are satisfied. In both cases decontractions were used, hence ν indicated
below is a minor morphism.

G′ G S

L M
µ ◦ r

m
m

ν

L R

G′ H ′

G H ′′

M

S

m m′′

r

m m′

r′

ν ν′

µ

m′

By definition the match m is total and injective, but m = ν ◦m may be non-
injective. The application of r rewrites G′ so some H ′ as seen in the right diagram
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above. We can then form the pushout of r′ and ν, to obtain H ′′. Note that by
pushout splitting the right square in the right diagram above is a pushout.
Furthermore m′′ = ν′ ◦m′ is total since m′ is total and ν′ only contracts edges
not contained in R. Hence (by Lemma 4) S must be a minor of H ′′. It holds
that H ′ ≥ H ′′ ≥ S and hence the application of r to G′ yields a graph larger
than (or equal to) S. ut

Theorem 3. If there is a bounding function br for every rule r, the set generated
by pbn(S) is a finite basis of ↑Pred(↑S).

Proof. Let Ĝ ∈ ↑Pred(↑S), then there is a graph G ≤ Ĝ, a rule r : L ⇀ R and a
total, injective match m : L → G satisfying all NACs, such that G is rewritten
to some H and S ≤ H. By Lemma 3 there are minor morphisms ν : Ĝ 7→ G
and µ′ : H 7→ S. Since a rewriting step is a pushout, by Lemma 5 there are
morphisms µ, µr, r′′ and m′′ as shown below, such that the outer square is a
pushout.

L R

G HĜ

S

N
r

m m′

r′

µ′

ν

ni
L R M

G HĜ

SX

N
r µr

m m′

m′′
r′

µ

r′′

µ′

ν

ni

The morphism µ◦m is total and injective on edges, but not necessarily injective
on nodes, hence in Step 3 of the procedure non-injective matches are split in every
possible way until the match is injective. By Lemma 6, µ can be decomposed in
such a way that all edge deletions can be performed before all edge contractions.
Thus, while decontracting (and possibly adding previously non-existent nodes)
no edge insertions are necessary between decontraction steps. In Step 3 for every
X a graph X ′ is generated such that there are minor morphisms µ2 : G 7→ X ′,
µ1 : X ′ 7→ X with µ = µ1 ◦ µ2 and µ2 ◦m is a total, injective match of L in X ′

(see diagram below).
If µ2 ◦m satisfies all NACs, X ′ is stored and the procedure terminates. Since

X ′ ≤ G ≤ Ĝ, it holds that Ĝ ∈ ↑pbn(S). If µ2 ◦m violates at least one NAC, we
observe that any graph larger than X ′ wrt. the subgraph relation also violates
the NAC, since there is a total, injective match of any graph into its larger graph.
Thus the match of a NAC can only be destroyed by decontracting an edge. Again
by Lemma 6 no edge insertions are needed between decontraction steps.

Ĝ G

M M ′

X ′

X

ν

µ′2

µ2

µ

µ′′2 µ1
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Because of the bounding function we know that there is a graph M and
minor morphisms µ′2 : G 7→ M , µ′′2 : M 7→ X ′ with µ2 = µ′′2 ◦ µ′2 and ‖µ′′2 ‖ ≤
br(µ2 ◦m) (see diagram above). Without loss of generality we assume that µ′′2 is
minimal, i.e. there are no µ′′2 : G 7→M , µ′2 : M 7→ X ′ such that µ2 = µ′′2 ◦µ′2 and
‖µ′′2 ‖ < ‖µ′′2 ‖. This means that µ′′2 does not delete edges (without merging some
of its nodes) since µ′′2 would still satisfy the conditions of the bounding function
if the edge deletion is omitted and therefore µ′′2 would not be minimal. Since
µ′′2 contracts at most ‖µ′′2 ‖ ≤ br(µ2 ◦m) edges, at some point while recursively
processing step 4 a graph M ′ is reached which is a subgraph of M possibly
missing some isolated nodes. Since M ′ ≤M ≤ G ≤ Ĝ it holds that Ĝ ∈ ↑pbn(S).

Since all steps of the procedure have finite runtime, especially the splitting
in step 3 is bounded by the number of non-injectively matched nodes and the
recursion in step 4 is performed to a fixed depth, the number of stored graphs
is finite and hence a finite basis. ut

Proposition 2. There is a bounding function for all rules if the corresponding
GTS satisfies the following properties:

1. ar(`) ≤ 2 for all labels ` ∈ Λ and

2. for every negative application condition n : L→ N the graph N has at most
one edge and two nodes in addition to n(L).

Proof. Let ni : L→ N be a NAC. If every edge of N has a preimage in L or if the
edge in N which has no preimage in L is only connected to nodes which have no
preimage in L, ni cannot be destroyed by decontractions (or in any other way).

For each rule r we define the result of the bounding function br(m) for some
match m : L → G to be zero if there is at least one such NAC and the sum of
the number of different matches of each NAC in G if r has no such NAC.

If a rule has at least one such NAC, the conditions for a bounding function
are trivially satisfied (no larger graph exists satisfying all NACs). So assume
every NAC is of one of the following forms: a unary edge connected to a node
with preimage, a binary edge connected the one node with preimage, a binary
edge connected to two different nodes with preimage or a binary edge connected
to one node with preimage and one node without preimage. All possibilities to
destroy a match of one such NAC using decontraction is shown below. Gray
nodes indicate nodes with preimage in L, dashed edges are the edges added by
the decontraction and arrows with two arrow tips indicates that the arrow can
be directed in both ways.

≤

≤
≤

≤

≤
≤
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Each match of a NAC can be destroyed with just one decontraction, but this
decontraction may generate a new match for the same or a different NAC. Let
G′ be a graph and µ : G′ 7→ G a minor morphism such that there is a match
m′ : L→ G′ satisfying all NACs and m = µ◦m′. We assume that G′ is minimal,
that is there is no graph G′′ with minor morphisms µ′ : G′ 7→ G′′, µ′′ : G′′ 7→ G
such that µ′ ◦m′ is a match satisfying all NACs. Each edge e ∈ G′ on which µ is
undefined is attached to at least one node in the range of m′, since otherwise e
can be deleted or contracted without generating a match of any NAC, because
for that at least one node has to be in the range of m′. Now if a new match of
a NAC is generated by a decontraction the added edge e′ is part of it and the
match has to be deleted again by decontraction as shown above. In every case
µ will be undefined for e′ and e′ is attached to nodes not in the range of m′.
The other decontraction could also be performed first, thus every decontraction
generating a new match of a NAC is already represented by another case and
can be discarded. ut
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