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´´Mathematics and Music, the most sharply contrasted fields of 
scientific activity which can be found, and yet related, supporting each 
other, as if to show forth the secret connection which ties together all 
the activities of our mind...´´ 
Hermann von Helmoltz, 1884 

 
 

1. Introduction 

The relationship between music and mathematics has been in 
focus of attention of a number of scientists who deal with mathe-
matics and also biology and medicine on the one hand and are 
interested in some parts of art on the other hand. The numerous 
and deep connections between these kinds of human creative 
activity can be explained by the strict structures in music 
constructions and emotional nature of any challenging mathema-
tical investigation. I belong to a group of mathematicians for 
whom music gives ever lasting inspiration for the algebraic re-
search.  
One of the brightest experiences in my professional life was the 
course of lectures on algebra in St. Petersburg (Leningrad) State 
University delivered by Professor Dmitriy Konstantinovich 
Faddeev, corresponding member of the Academy of Sciences of the 
former USSR. Our student stream turned out to be the last one to 
have the happiness of getting the basic algebraic knowledge from 
him. His lectures were never boring, always emotional and full of 
wonders and colours. We got a feeling from him that algebra is the 
nicest piece of human creations. Being never completed, it 
conceals lots of mysteries for everybody who is willing to open its 
secrets step by step. Greatly impressed by the beauty of algebra 
revealed to me by Professor Faddeev I have chosen it as the main 
subject in the university for my professional activity.  

By that time I had got an almost 15 year experience of playing 
the piano and a Music School diploma. The fact that Professor 
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Faddeev was a brilliant pianist gave me a clue to discover the 
secret of his great Algebra presentations. He was able to show the 
“music harmony” of algebraic results and constructions. On the 
other hand the algebraic structures in music had been known for 
me by that time. These links, the presence of algebra in music and 
music in algebra, connected the two favourite activities in my 
mind and life forever. I am still grateful to Professor Faddeev for 
his fantastic (even if not intentional) opening this interplay, which 
completely coincides with my own perception. 

Before that my strong subconscious feeling that playing the 
piano helps my algebraic thinking made me play intensively 
during the periods of taking exams in Mathematics. Music gave 
me emotional and even physical relief, the latter being explained 
by the sport ingredient of a music performance, some pieces of 
which took a lot of physical strength. I consider the combination 
of playing the piano and doing Algebra as a very agreeable union, 
with the parts complementing each other and not contradicting. 
Later I have learnt about the so-called “Mozart effect”, the state-
ment that the early musical lessons and training in childhood, 
especially with respect to some kinds of classical music, lead to 
the development of logical thinking in terms of abstract categories. 
Visiting Macquarie University in Sydney in 1999 I heard about 
some biological investigation on balancing left and right brain 
thinking and a very positive role of music exercises in combination 
with abstract thinking. In my opinion the “finger memory” is an 
absolutely special kind of mind activity, which never works under 
other circumstances. It affects a human brain like an ordering 
mechanism and distributes information systematically. That's why 
intensive playing the piano after  long mathematical work brushes 
up mathematician’s mind like a night sleep passing different pha-
ses (the organising role of those have been quite well investigated). 
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The present essay does not pretend to give a comprehensive 
review of mathematics-music links and can be considered only as 
an attempt to describe and summarise my own experiences 
related to the combination of both. This is done in connection with 
some facts accessible in a series of articles, books and 
www.presentation, see [3-5].  

First, we discuss some algebraic aspects of music harmony 
which can be associated with the basic algebraic knowledge. Some 
of them are partially known, while the others have arisen for me in 
process of certain algebraic research and got a detailed considera-
tion below.  
 
 
 

2. Algebra in Music 
Cyclic Group Z/12 Z and Tonality Circle 

We start with the main idea of identifying octave with a “cyclic 
identity”, which was yet known to ancient Greeks. So all the piano 
keys factorised modulo 12 represent a cyclic structure in the 
sense that the notes sound in unison (we would say, coincide) if 
and only if the visible distance between their keys is equal to an 
octave that is just 12 keys. The vibration frequencies are in the 
same ratio for any two neighbouring (successive) keys. Any two 
successive keys form an interval called semitone in accordance 
with Johann Sebastian Bach’s system which is used at present. It 
means that octaves (characterised by the ratio 1:2) are divided 
into twelve equal semitones. From algebraic point of view a 
semitone (the so-called minor second interval) can be considered 
as a generator of group I of all intervals (in increasing order: minor 
second, major second, minor third, major third, perfect fourth, 
tritone, perfect fifth, minor sixth, major sixth, minor seventh, 
major seventh, octave) with respect to the commutative addition of 
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intervals in which the highest note of the predecessor coincides 
with the lowest note of the follower. (*) 
For example, major third + minor third = perfect fifth. According to 
this definition of sum in I, any interval can be considered as a 
multiple of the minimal interval, semitone, and the algebraic 
structure of I coincides with a cyclic group of order 12. 
In the theory of music the piano keyboard is traditionally used for 
theoretical constructions and their explanations and we use it as 
well. Commonly, for the seven main notes DO, RE, MI, FA, SOL, 
LA, TI we use letters C, D, E, F, G, A, B (Chugunov 1985) 
accordingly. 
All the other notes can be obtained from those by adding the signs 
called sharp (#) and flat (ь), which make the note a semitone 
higher or lower. We may imagine a piano that infinitely extends in 
both directions, to the left and right. It will be the piano with 
countably many keys, which are in one-to-one correspondence 
with the set Z of integer numbers. Let’s take for certain that DO of 
the primary octave corresponds to zero, then all the DOs corres-
pond to a subgroup of integers, say C, which is C = 12 Z, 
furthermore, according to the above notation, C#=1+12 Z, D =2 + 
12 Z , … , B = 11 + 12 Z are congruence classes modulo 12. Since 
each note of the primary octave can be determined by its distance 
(i.e. interval) from the note DO of the same octave, the above 
group I of all intervals is isomorphic to the group of the classes C, 
C#, D, D#, E, F, F#, G, G#, A, A#, B (Fuchs 1973) or, in other 
notation, C, D ь, D, Eь E, F, G ь, G, A ь, A, B ь, B, which form 
the cyclic group of order 12, traditionally denoted by Z /12 Z, with 
respect to the addition of the classes. We call the chain (Fuchs 
1973) the proper chain of the main octave because its elements are 
arranged in the same order as those at the piano keyboard. The 
classical group theory states that the cyclic group Z/12 Z has 
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different generators K=k+12 Z for integers k relatively prime with 
12, that is k=1, 5, 7, 11.  
It is known that a melody performance (in particular singing a 
song) can start from any note which determines the key note, or, 
simpler, the key (i. e. the main note, or, in other words, tonality) 
that completes the melody performance in most cases similar to a  
full stop at the end of a sentence pronounced. From now on we 
use the word “key” in different sense, as tonality and also, as a 
note of the piano keyboard. 
If we list the notes (Chugunov 1985) at the piano keyboard from 
left to right starting from any of them, not necessarily C, the 
ordinal number of each is called its position number with respect 
to the first one, which has the 1st position. For instance, G is the 
5th position with respect to C and the 3d position with respect to E.  
The interval between notes i and j can be denoted by the ordered 
pair (i, j) according to their positions at the piano keyboard (i is 
supposed to be of a lower pitch than j). It is easy to see that  (j, 
i)=–(i, j) in I, because the rule (*) implies (j, i) +(i, j)=octave (Beer). 
In general, the choice of the key note is a principal step in a music 
performance and determines the tonality in which a music piece 
sounds. Normally we consider the note position with respect to the 
key note, which can be supplied with flat or sharp. 

The traditional circle of the flat and sharp keys, the so-called 
circle of fifths, is the nicest ingredient of the classical music 
theory, which makes dealing with it simple, logical and pleasant 
for musicians and composers. However, the key circle construc-
tion has a strict group theory explanation based on the group 
isomorphism between I and Z/12 Z. In fact, the key circle 
determines a special order in which all the keys considered as 
elements of Z/12 Z, are listed and each of them is taken only 
once. If we take any generator K=k+12 Z of Z/12 Z then the list of 
all its multiples sK with s=0, 1, …11, coincides with the group 
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Z/12 Z in the set theory sense. Denote by e the generator of Z/12 
Z defined by k=1, which corresponds to the minor second, i. e. 
semitone, in I. Then 7e and 5e will be also generators of Z/12 Z. 
If we take the generator e, then the chain {se:s=0, 1,…11} coin-
cides with the above proper chain (2). Let’s take the generator 7e, 
then the set {7se:s=0, 1,…11} lists all the elements of Z/12 Z in a 
different order, which is accepted in music as the key chain. If we 
allow s=0,1,…11 and also s=12 we get the key circle because the 
beginning and the end of the chain coincide with C and corres-
pond to the note DO (as 12 = 0 mod 12). So, we have the following 
key circle in the clockwise succession starting from C.  
 

 
 
It is called the circle of fifths because the distance of 7e corres-
ponds to the interval between the 1st and 5th positions and is 
equal to the perfect fifth. Furthermore, the equality 7e+5e=12e 
implies that – 7e=5e in Z/12 Z. Then the passing of the key circle 
in the opposite direction, i. e. counter-clockwise begun  from C, 
according to (Beer), corresponds to the choice of the generator  
that it equal to – 7e, or 5e in a different form. It is called the circle 
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of fourths because the distance of 5e corresponds to the interval 
between the 1st and 4th positions and is equal to the perfect 
fourth. Note that on the 6th  step from the beginning C these 
clockwise and counter-clockwise circles meet at the same key 
F#=G ь  because (7e) 6=42e, (5e) 6=30 e and 42–30=12=0 mod 
12. Traditionally, the list of seven successive keys starting with C 
of the clockwise circle, form the chain of the sharp keys, C, G, D, 
A, E, B, F#, and, analogously, the seven keys of the counter-
clockwise circle form the chain of the flat keys, C, F, B ь, E ь, A 
ь, D ь, G ь. These chains have intersections only in the first and 
last elements and together give the list of all 14 – 2 = 12 major 
keys. The minor keys can be considered in a parallel connection 
with the major ones and are situated minor third lower than the 
corresponding major keys. So, all the above can be extended to 
the circles of the minor keys which start with the note A. We see 
that the elegant tonality construction which is automatically used 
by composers and musicians as a technical tool has a strict group 
theory structure. 

 
 
 

Music pieces as elements of an algebraic structure    

A music phrase can be considered as a sequence of sounds cha-
racterized by their relative pitches and durations. Any music piece 
has its own time duration. In this sense the time characteristic of 
a sound is very important. The music theory is based on the well-
known rhythm arithmetic. According to the latter, the time of the 
performance is divided into equal bars, which contain a certain 
number of beats of a certain duration. In music notation it is 
determined by a fraction, for instance,       means that there are 
six  bits of       duration  of  a  standard  time  interval in each bar,  

6
8

  corresponds to the existence of four quarter beats in a bar, i.e. 
the whole measure denoted by C.   

1 
8 

4 
4 

If we fix d, the smallest note length (i. e. sound duration) that 
takes place in music pieces considered, we may form an additive 
semi-group T generated by d, of time intervals which are multiples 
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of d. The additive operation of summing intervals is commutative 
and will be denoted by (+).  
Let N be the set of all notes of the piano keyboard. Assume that 
zero-note 0, which means no note, is also an element of N and 
plays the same role as empty set considered as a subset of any 
set. We may define the addition (+) for a finite number of notes 
assuming that the sum m+n means that the notes m and n sound 
simultaneously and generalizing this to finitely many notes. So, 
the note sum is a chord and we see that the note addition is 
defined as an associative and commutative operation, i. e. it does 
not depend on the order of summands. Let M be a semi-group of 
all chords, then M includes all elements of N since a separate note 
is a particular case of chords. More precisely, M is generated by 
the set N. 
Furthermore, for any a∈M and t∈T let’s denote by a+t the 
“elementary piece” which coincides with the sound of the chord a 
lasting for the time t. If a=0 then t+a means a pause of duration t. 
Construct a semi-group of elementary pieces as the direct sum 
M⊕T which is also a semi-group with respect to the component-
wise addition.  

For any two elements x and y  from M⊕T determine their pro-
duct x ∗ y as the sequence (x, y) and extend this associative but 
not commutative operation to any finitely many elements of M⊕T. 
The essence of this second operation (∗ ) is very simple and means 
that the elementary piece y sounds just after x. Let P be the set of 
all possible pieces, i. e. finite consequences. Clearly, P contains 
M⊕T because the elementary pieces coincide with one element 
sequences. Extend the addition from M⊕T to all elements of P 
setting the component-wise addition of sequences in accordance 
with the ordinal numbers of the components, elements of M⊕T 
(we keep in mind that the summands are not necessarily of the 
same length as sequences). 
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We see that P is closed under the two associative operations, 
addition (+) and multiplication (∗ ), with the addition being also 
commutative, and P can be considered as a set with two algebraic 
operations. Then any piece of music is represented as an element 
of P. The most important kind of sets with two operations is called 
a ring in the classical Algebra. The introduced set P does not 
satisfy the ring axioms because P cannot be a group with respect 
to the addition as it is necessary for a ring. This fact can be easily 
explained by the following. If we have a note sounding for some 
time, there is no other note pressed together with the first one on 
the piano keyboard so that the impression of the sound of both 
would be like nothing sounds. It means that for an element p of P 
we can not find an element –p with the property p+(–p)=O if O is 
naturally supposed to be a symbolic silence. However, P is a semi-
group with respect to each of the operation (+) and (∗ ). In this 
connection we mention that the set of all positive integers +Z  is 
also a semi-group with respect to the regular addition and multi-
plication of numbers. 
We discussed the algebraic structure of a music piece and did not 
take care of its harmony. So, masterpieces on the one hand and 
very disharmonic pieces on the other hand can be represented by 
the elements of P. In this sense some elements of P sound nice, 
while the others cannot be called musical pieces if we suppose 
that music should not be a chaos of sounds. This leads us to 
emotional perception of elements of algebraic structures, and this 
view is accessible for people with very outstanding abilities. It is 
known that for some of them who are very good at mental 
arithmetic, the integer numbers, elements of +Z , are differently 
coloured. It makes the arithmetic operations with the numbers 
visible by their inner sight. Such people demonstrate wonderful 
abilities operating with very big numbers. Our construction, 
perhaps, reveals the possibility of not seeing but hearing the 
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“melody of algebra”, which sometimes sounds in a soul of a 
mathematician even if this connection is not quite clear for 
him/her. I still remember Professor Faddeev’s words that if an 
algebraic hypothesis looks elegant, there are many chances that it 
is true and can be proved. May be in some cases we should say 
that “it sounds nice” instead of “it looks elegant”. Anyway, the 
search for beauty in Algebra quite often coincides with the search 
for the truth. 
 

 
 

Melody and accompaniment in algebraic connection 

Now we turn to harmonious music, i. e. music itself, and try to 
analyse some connections between the melody and its accompani-
ment. The music line is based on the row of the harmonic chords. 
A very simple chord row is an alternation of the classical chords 
constructed on the first, fourth and fifth positions with respect to 
the first one, that is the key note (tonality). In general the music 
row consists of numerous chords and their modifications, some-
times they are very special and fit a particular genre, for instance, 
jazz (Chugunov 1985). Recall that the final chord in most cases is 
the chord of the first position if the music piece (phrase) has a 
complete narrative intonation. So, a certain chord dominates in 
each small part of the whole music piece. Being an accompani-
ment, this chord, in fact, determines the melody line, whereas the 
melody, as it may be explained to beginners, like a queen from a 
fairy tale, dictates ‘who’ (or which chord, i. e. group of notes-
servants) should accompany ‘her’ during a certain time period. 
The change of a dominating chord (harmony move) is associated 
with the change of the queen suite, who serve the queen-melody 
and at the same time protect her as bodyguards, so that she 
cannot make a step away from them. Then the queen is able to 
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step only in a certain direction and her moves are restricted by her 
suite. 
Let’s return to the group of all note classes with respect to the 
addition, see (Fuchs 1970). It was shown that this group is 
isomorphic to the group Z/12 Z. Denote the additive semi-group 
of all possible chords, consisting of these 12 elements, by L. It is 
the semi-group generated by the set (Fuchs 1970), and the sum of 
its elements means the simultaneous sound of any notes from the 
corresponding classes. 
A dominating chord determines a sub-semi-group, say K, 
generated by its notes. Then the melody notes, say v, can be 
considered as elements of the quotient L/K in the sense that they 
sound together with elements of K in a harmonic alliance. Since 
the simultaneous sound means the sum, we get v + K, a con-
gruence class modulo K, and one more additional note w from K 
does not change the harmony, which corresponds to the equality v 
+ K=v+w+K of the elements in L/ K if w∈K. The factor-semi-group 
remains until another chord comes up to replace the previous 
dominating chord. Summarizing this we suggest an algebraic 
model of music constructions in which a sequence of harmonies is 
a sequence of sub-semi-groups of L and melody elements belong 
to the corresponding factor-semi-group in proper time. The model 
also reflects the fact that a melody transposition to any octave is 
an admissible trick, which makes the music performance more 
subtle but does not really change it.  
We logically complete this Section quoting H. E. Huntley: “The 
syntax and the grammar of the language of music are not 
capricious; they are dictated by the texture and organization of the 
deep levels of mind, so with mathematics”.  
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Music in Algebra (one example)  

In comparison with the previous section this one is connected 
with a very special area of Abelian Group Theory and can be 
difficult and, perhaps, not interesting for a reader who has never 
dealt with Algebra of such kind. The links between Music and 
direct decompositions of some groups I am describing now became 
evident for me in the process of solution of two problems stated by 
Professor Laszlo Fuchs, one of the brightest mathematicians 
among our contemporaries. I feel that the music interpretation of 
direct decompositions of almost completely decomposable groups 
described here helped me to cope with the complicated combi-
natorial construction which led to the successful solution of the 
above problems (Fuchs 1970: Problems 67, 68). 

For short and to be kind to readers, I am demonstrating the 
presence of music in the direct decomposition theory by consi-
deration of only one example. Let A  be a completely decomposable 
group of rank 10 which is a direct sum of 5 homogeneous 
components of pair-wise incomparable types, each of rank 2, that 
is  

A  = 1A ⊕ 2A ⊕ 3A ⊕ 4A ⊕ 5A  where group iA = *ia ⊕ *ib  is a 
direct sum of its pure rank-one subgroups *ia and *ib  of 
the same type,  i =1, 2, 3, 4, 5.  

 
Consider a group X  generated by A  and certain additional 
elements 1b , 2b , 3b , 4b  so that 

1p 1b ∈ 1A ⊕ 2A ,   2p 2b ∈ 2A ⊕ 4A ,   3p 3b ∈ 3A ⊕ 5A ,   4p 4b ∈ 2A ⊕ 3A  

for some distinct integers 1p , 2p , 3p , 4p  which don’t divide any of 
the elements { ia , ib : i =1, 2, 3, 4, 5} in A . 
According to the Abelian Group Theory, group X  belongs to the 
class of almost completely decomposable groups and admit non-
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isomorphic direct decompositions. The combinatorial approach 
developed shows, in particular, that X  has different decom-
positions into indecomposable summands, whose ranks give the 
following decompositions of the rank of group X ,  

10 = 5+1+1+1+1+1 = 3+3+1+1+1+1 = 2+3+2+1+1+1. 

The first decomposition of the number 10 corresponds to the so-
called main decomposition of X  that contains exactly one indecom-
posable summand of the maximum possible rank and the others 
of rank 1. 
Now we are ready to construct a link between decompositions of 
X  and some music pieces. Any direct decompositions of the 
homogeneous group iA  are isomorphic and have the form 

*ia ⊕ *ib  but the elements ia  and ib  can’t be determined 
uniquely. Different special choices of such elements lead to 
different decompositions of group X  into indecomposable 
summands. We denote any pair of elements ia  and ib  from a 
decomposition of iA  by a pair of notes of the same pitch, while the 
elements of different homogeneous components iA  and jA  with 
i ≠ j  are represented by notes of different pitches. In this way we 
get representations of all groups iA  on the note staff.  
 
 
 
 
 
 
If there exists an element from *ia ⊕

*ja , i ≠ j , which is divisible 
by one of the primes 1p , 2p , 3p , 4p  in X  but not in A , we make the 
notes corresponding to ia  and ja  sound simultaneously as a 
chord. In our construction a chord represents indecomposable 
summand of the rank equal to the number of its notes. In 
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particular, a separate note corresponds to a rank-one summand. 
It was proved that different choices of generating systems in 
groups iA , i =1, 2, 3, 4, 5 lead to the following interpretations of 
X ,   

 

 
Then the above decompositions of group X  “can be heard” as 
follows,  
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I am finishing the consideration of some facts which prove the 
profound music-mathematics connections quoting Igor Stravins-
ky: “Musical form is close to mathematics – not perhaps to 
mathematics itself, but certainly to something like mathematical 
thinking and relationship”. It is not possible to discuss all the 
links between music and algebra in detail in one article. Some of 
them are left out of this consideration. I believe that this subject 
needs a comprehensive study and the more steps have been made 
in this direction, the more interesting it seems to be. I am greatly 
thankful to Professor Doris Janshen who initiated this research 
and encouraged me to start this interesting work. I always felt 
great help from all women of her group, especially, I should thank 
Dr. Gudrun Schäfer for her constant warm attention. 
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	In the theory of music the piano keyboard is traditionally used for theoretical constructions and their explanations and we use it as well. Commonly, for the seven main notes DO, RE, MI, FA, SOL, LA, TI we use letters C, D, E, F, G, A, B (Chugunov 1985) accordingly.
	All the other notes can be obtained from those by adding the signs called sharp (#) and flat (ь), which make the note a semitone higher or lower. We may imagine a piano that infinitely extends in both directions, to the left and right. It will be the piano with countably many keys, which are in one-to-one correspondence with the set Z of integer numbers. Let’s take for certain that DO of the primary octave corresponds to zero, then all the DOs corres pond to a subgroup of integers, say C, which is C = 12 Z, furthermore, according to the above notation, C#=1+12 Z, D =2 + 12 Z , … , B = 11 + 12 Z are congruence classes modulo 12. Since each note of the primary octave can be determined by its distance (i.e. interval) from the note DO of the same octave, the above group I of all intervals is isomorphic to the group of the classes C, C#, D, D#, E, F, F#, G, G#, A, A#, B (Fuchs 1973) or, in other notation, C, D ь, D, Eь E, F, G ь, G, A ь, A, B ь, B, which form the cyclic group of order 12, traditionally denoted by Z /12 Z, with respect to the addition of the classes. We call the chain (Fuchs 1973) the proper chain of the main octave because its elements are arranged in the same order as those at the piano keyboard. The classical group theory states that the cyclic group Z/12 Z has different generators K=k+12 Z for integers k relatively prime with 12, that is k=1, 5, 7, 11. 
	It is known that a melody performance (in particular singing a song) can start from any note which determines the key note, or, simpler, the key (i. e. the main note, or, in other words, tonality) that completes the melody performance in most cases similar to a  full stop at the end of a sentence pronounced. From now on we use the word “key” in different sense, as tonality and also, as a note of the piano keyboard.
	If we list the notes (Chugunov 1985) at the piano keyboard from left to right starting from any of them, not necessarily C, the ordinal number of each is called its position number with respect to the first one, which has the 1st position. For instance, G is the 5th position with respect to C and the 3d position with respect to E. 
	The interval between notes i and j can be denoted by the or dered pair (i, j) according to their positions at the piano keyboard (i is supposed to be of a lower pitch than j). It is easy to see that  (j, i)=–(i, j) in I, because the rule (*) implies (j, i) +(i, j)=octave (Beer).
	In general, the choice of the key note is a principal step in a music performance and determines the tonality in which a music piece sounds. Normally we consider the note position with respect to the key note, which can be supplied with flat or sharp.
	Music pieces as elements of an algebraic structure   
	A music phrase can be considered as a sequence of sounds cha racterized by their relative pitches and durations. Any music piece has its own time duration. In this sense the time characteristic of a sound is very important. The music theory is based on the well-known rhythm arithmetic. According to the latter, the time of the performance is divided into equal bars, which contain a certain number of beats of a certain duration. In music notation it is determined by a fraction, for instance,       means that there are six  bits of       duration  of  a  standard  time  interval in each bar, 
	  corresponds to the existence of four quarter beats in a bar, i.e. the whole measure denoted by C.  
	If we fix d, the smallest note length (i. e. sound duration) that takes place in music pieces considered, we may form an additive semi-group T generated by d, of time intervals which are multiples of d. The additive operation of summing intervals is commutative and will be denoted by (+). 
	Let N be the set of all notes of the piano keyboard. Assume that zero-note 0, which means no note, is also an element of N and plays the same role as empty set considered as a subset of any set. We may define the addition (+) for a finite number of notes assuming that the sum m+n means that the notes m and n sound simultaneously and generalizing this to finitely many notes. So, the note sum is a chord and we see that the note addition is defined as an associative and commutative operation, i. e. it does not depend on the order of summands. Let M be a semi-group of all chords, then M includes all elements of N since a separate note is a particular case of chords. More precisely, M is generated by the set N.
	Furthermore, for any a M and t T let’s denote by a+t the “elementary piece” which coincides with the sound of the chord a lasting for the time t. If a=0 then t+a means a pause of duration t. Construct a semi-group of elementary pieces as the direct sum M T which is also a semi-group with respect to the component-wise addition. 
	We discussed the algebraic structure of a music piece and did not take care of its harmony. So, masterpieces on the one hand and very disharmonic pieces on the other hand can be re presented by the elements of P. In this sense some elements of P sound nice, while the others cannot be called musical pieces if we suppose that music should not be a chaos of sounds. This leads us to emotional perception of elements of algebraic structures, and this view is accessible for people with very outstanding abili ties. It is known that for some of them who are very good at mental arithmetic, the integer numbers, elements of  , are differently coloured. It makes the arithmetic operations with the numbers visible by their inner sight. Such people demonstrate wonderful abilities operating with very big numbers. Our con struction, perhaps, reveals the possibility of not seeing but hear ing the “melody of algebra”, which sometimes sounds in a soul of a mathematician even if this connection is not quite clear for him/her. I still remember Professor Faddeev’s words that if an algebraic hypothesis looks elegant, there are many chances that it is true and can be proved. May be in some cases we should say that “it sounds nice” instead of “it looks elegant”. Anyway, the search for beauty in Algebra quite often coincides with the search for the truth.
	Melody and accompaniment in algebraic connection
	Now we turn to harmonious music, i. e. music itself, and try to analyse some connections between the melody and its accompani ment. The music line is based on the row of the harmonic chords. A very simple chord row is an alternation of the classical chords constructed on the first, fourth and fifth positions with respect to the first one, that is the key note (tonality). In general the music row consists of numerous chords and their modifications, some times they are very special and fit a particular genre, for instance, jazz (Chugunov 1985). Recall that the final chord in most cases is the chord of the first position if the music piece (phrase) has a complete narrative intonation. So, a certain chord dominates in each small part of the whole music piece. Being an accompani ment, this chord, in fact, determines the melody line, whereas the melody, as it may be explained to beginners, like a queen from a fairy tale, dictates ‘who’ (or which chord, i. e. group of notes-servants) should accompany ‘her’ during a certain time period. The change of a dominating chord (harmony move) is associated with the change of the queen suite, who serve the queen-melody and at the same time protect her as bodyguards, so that she cannot make a step away from them. Then the queen is able to step only in a certain direction and her moves are restricted by her suite.
	Let’s return to the group of all note classes with respect to the addition, see (Fuchs 1970). It was shown that this group is isomorphic to the group Z/12 Z. Denote the additive semi-group of all possible chords, consisting of these 12 elements, by L. It is the semi-group generated by the set (Fuchs 1970), and the sum of its elements means the simultaneous sound of any notes from the corresponding classes.
	A dominating chord determines a sub-semi-group, say K, generated by its notes. Then the melody notes, say v, can be considered as elements of the quotient L/K in the sense that they sound together with elements of K in a harmonic alliance. Since the simultaneous sound means the sum, we get v + K, a con gruence class modulo K, and one more additional note w from K does not change the harmony, which corresponds to the equality v + K=v+w+K of the elements in L/ K if w K. The factor-semi-group remains until another chord comes up to replace the previous dominating chord. Summarizing this we suggest an algebraic model of music constructions in which a sequence of harmonies is a sequence of sub-semi-groups of L and melody elements belong to the corresponding factor-semi-group in proper time. The model also reflects the fact that a melody transposition to any octave is an admissible trick, which makes the music performance more subtle but does not really change it. 
	We logically complete this Section quoting H. E. Huntley: “The syntax and the grammar of the language of music are not capricious; they are dictated by the texture and organization of the deep levels of mind, so with mathematics”. 
	Music in Algebra (one example) 
	In comparison with the previous section this one is connected with a very special area of Abelian Group Theory and can be difficult and, perhaps, not interesting for a reader who has never dealt with Algebra of such kind. The links between Music and direct decompositions of some groups I am describing now became evident for me in the process of solution of two problems stated by Professor Laszlo Fuchs, one of the brightest mathematicians among our contemporaries. I feel that the music interpretation of direct decompositions of almost completely decomposable groups described here helped me to cope with the complicated combi natorial construction which led to the successful solution of the above problems (Fuchs 1970: Problems 67, 68).
	For short and to be kind to readers, I am demonstrating the presence of music in the direct decomposition theory by consi deration of only one example. Let   be a completely decomposable group of rank 10 which is a direct sum of 5 homogeneous components of pair-wise incom parable types, each of rank 2, that is 
	  =          where group  =     is a direct sum of its pure rank-one subgroups  and   of the same type,   =1, 2, 3, 4, 5. 
	Consider a group   generated by   and certain additional elements  ,  ,  ,   so that
	      ,         ,         ,         
	for some distinct integers  , , ,  which don’t divide any of the elements { ,  :  =1, 2, 3, 4, 5} in  .
	According to the Abelian Group Theory, group   belongs to the class of almost completely decomposable groups and admit non-isomorphic direct decompositions. The combinatorial ap proach developed shows, in particular, that   has different decom positions into indecomposable summands, whose ranks give the following decompositions of the rank of group  , 
	10 = 5+1+1+1+1+1 = 3+3+1+1+1+1 = 2+3+2+1+1+1.
	The first decomposition of the number 10 corresponds to the so-called main decomposition of  that contains exactly one indecom posable summand of the maximum possible rank and the others of rank 1.
	Now we are ready to construct a link between decompositions of   and some music pieces. Any direct decompositions of the homogeneous group   are isomorphic and have the form     but the elements   and   can’t be determined uniquely. Different special choices of such elements lead to different decompositions of group   into indecomposable summands. We denote any pair of elements   and   from a decomposition of   by a pair of notes of the same pitch, while the elements of different homogeneous components   and   with     are represented by notes of different pitches. In this way we get representations of all groups   on the note staff. 
	If there exists an element from   ,    , which is divisible by one of the primes  , , ,  in   but not in  , we make the notes corresponding to   and   sound simultaneously as a chord. In our construction a chord represents indecom posable summand of the rank equal to the number of its notes. In particular, a separate note corresponds to a rank-one summand. It was proved that different choices of generating systems in groups  ,  =1, 2, 3, 4, 5 lead to the following interpretations of  ,  
	Then the above decompositions of group   “can be heard” as follows, 
	I am deeply indebted to Professor Rüdiger Göbel for his support and the inspiration I got in discussions with him. Needless to say that the opportunity of playing the piano regularly he arranged for me during my visit to Essen University was very important for this work. I am very grateful to my colleagues Dr. Lutz Strüngmann and Dr. Simone Wallutis for their help with the search for information on connections between music and mathematics, their interest in my own approach to this interplay and very creative and kind atmosphere in their group at Essen University.
	I should also express my sincere thanks to my colleague at St. Petersburg State Tech. University, Professor Nina Popova, who was the first reader of the article, for helpful discussions about its presentation style. 
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